
/

ANALYSIS OF A RANGE

OF OPTIMISATION

PATHFINDING

ALGORITHMS
Full name: Gagandeep Malhotra

Candidate number: 5380

Centre name: Langley Grammar School

Centre number: 51411

Qualification code: H446

Date: 2020

NEA AQA A-Level Computer Science

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 1 of 114

Table of Contents
Analysis ... 3

What is the problem area being investigated? ... 3

How am I solving this problem? .. 3

Background ... 4

Dijkstra’s Algorithm .. 4

A* (A Star) Search ... 4

Breadth-First Search .. 5

Greedy Best First Search ... 6

Who is my end-user? .. 6

How was this problem researched? .. 6

Survey ... 7

Interview .. 10

Objectives ... 12

Modelling of pathfinding algorithms ... 18

Dijkstra’s Algorithm .. 18

A* (A Star) Search ... 19

Documented Design .. 20

How does the system work? ... 20

Pseudocode: .. 20

Dijkstra’s Algorithm .. 20

A* (A Star) ... 20

Greedy Best First Search ... 21

Breadth-First Search .. 22

Data Structures .. 22

Lists .. 22

Graphs ... 22

Queues .. 22

Multi-dimensional Array .. 22

Dictionary ... 23

Variables .. 23

File Structure ... 23

Structure diagram .. 24

HCI (Human Computer Interaction) ... 25

Main Menu .. 25

Instructions Page ... 25

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 2 of 114

Settings Page .. 26

Maze Type Selection ... 27

Preset/Random Maze Menu .. 28

Custom Maze Menu .. 30

Pathfinder Choosing Menu ... 30

Pathfinders are run .. 31

Unity Engine Interface .. 35

Technical Solution: ... 36

Background Colour Code: .. 36

Background Rotation Code: .. 36

Camera Control Code: ... 37

Change Camera Code:... 41

Demo Controller Code: .. 42

Graph Code: .. 44

Graph View Code: ... 46

Grid Set Code: ... 50

Map Data Code: ... 53

Menu Selector Code: ... 59

Move Background Code: .. 61

Node Code: ... 62

Node View Code: .. 63

On Node Click Code: ... 65

Pathfinder Code: .. 66

Pause Code: .. 78

Priority Queue Code: ... 79

Settings Code: ... 81

Sort Type Code: ... 98

Toggle Instructions Code: .. 98

Toggle Settings Code: ..100

Testing ..101

Evaluation ...105

Completeness of Objectives ...105

Conclusion ..114

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 3 of 114

Analysis

What is the problem area being investigated?
Pathfinding algorithms are used for finding the shortest path in satellite

navigation systems, artificial intelligence in computer games, and routing data

packets over the internet, as well as a variety of other purposes in computer

systems. However, the universal problem encountered in each of these

applications of pathfinding algorithms is that there is no ‘perfect’ pathfinder.

Pathfinding algorithms that were guaranteed to find the shortest path were

typically time and resource-consuming, whereas non-resource-intensive

algorithms were unreliable in finding the ideal shortest path.

In order to mitigate the compensation between reliability and performance,

computer scientists were able to develop algorithms that combined both the

methods used in non-resource demanding pathfinders (Greedy Best-First search)

with those utilised in ‘optimal’ pathfinders (Dijkstra’s algorithm). Aiming for a

balance between the two extremes, A* (A Star) search algorithm became

commonplace in the gaming industry, being flexible in purpose and proven as

the most optimally efficient pathfinder possible. Still, A Star search is still not

perfect for every application as the implementation is relatively complex

compared to a simple pathfinding algorithm like Breadth-First Search, which

utilises solely a queue data structure.

As a consequence of the variety of pathfinding algorithms available, many

computer programmers are uncertain on what method to use to best suit the

purpose of their program. A basic peer-to-peer network that would need to

check every node in the network could simply use breadth-first search, whereas

a navigation system with traffic warnings and different terrains would need to

use Dijkstra’s algorithm to take the cost of a certain path into account. Usually,

the ‘best’ pathfinding algorithm to implement is subjective, but some algorithms

are better suited and more optimised for a specific purpose than others.

The problem being investigated in my project is the method in which computers

dynamically calculate the shortest path from a single starting point to a

destination, and how to decide on the pathfinding algorithm with the most

suitable characteristics for a particular program.

How am I solving this problem?
My Pathfinding Algorithms project will investigate, as well as compare, the

benefits and drawbacks of the more prevalent algorithms used in computer

pathfinding. I have chosen to use Dijkstra’s Algorithm, Breadth-First Search,

A*(A Star) Search Algorithm, and Greedy Best-First in this investigation. These

algorithms will be run through either a preset maze, random maze, or a custom-

maze, which can be altered by the user. This program aims to clearly

demonstrate the variety of methods these pathfinding algorithms use as well as

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 4 of 114

clearly illustrate their function as they traverse through a graph of nodes, which

will highlight the discrepancies between each pathfinding algorithm.

Background
Pathfinding algorithms simply plot, close to, or the shortest route possible

between two points and is used by computer applications. However, there are

many different methods devised to do so, including Dijkstra’s Algorithm,

Breadth-First Search, A*(A Star) Search Algorithm, and Greedy Best-First, which

are all used in my project. They all have different code and methods in which

they devise a shortest path. Here is a detailed summary of each pathfinder:

Dijkstra’s Algorithm
Dijkstra's Algorithm computes the cost of the shortest path from a starting node

to all other nodes in a graph, however, it can be stopped when the destination is

reached to give the shortest path to that node in particular. This pathfinding

algorithm is commonly used in mapping road networks, IP routing, and

telephone networks. First devised by its creator Edsger Dijkstra in 1956, and

since then, has become one of the most popular pathfinding algorithms. There

are several different implementations of Dijkstra’s Algorithm (using a Fibonacci

heap), but the one in this program uses a binary heap, which is a data structure

in the form of a binary tree that is used for priority queues.

Pros:

 -Guaranteed to find shortest possible path

 -Simple to implement

 -Takes cost of node into account

 Cons:

 -Explores every node so time taken is lengthy

 -Cannot take negative weighted nodes into account (in finance)

 Complexity:

 -O(n^2) where ‘n’ is number of nodes

A* (A Star) Search
A* Search is frequently used in programs because of it being exceptionally

efficient in searching a graph of nodes whilst also finding a near optimal solution

each time. This pathfinding algorithm is used abundantly in video games for

artificial intelligence, due to its efficiency. Computer scientists in Stanford

Research Institute published the algorithm in 1968, as a modified version of

Dijkstra’s Algorithm, and originally designed it as a generic graph traversal

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 5 of 114

algorithm. A* Search can be seen as a combination between Greedy Best First

and Dijkstra’s Algorithm as it approximates a path between the start and goal

node, by using the heuristic f(n) = g(n) + h(n), where g(n) is exact distance

to reach the goal node from the start node, and h(n) is an estimation of

distance from the goal node, to quickly find the shortest path. If the search goes

too deep in a path where the heuristic function value is too high, then g(n) will

pull the search algorithm's path back to a more promising path to find the

shortest route.

Pros:

 -Approximate (heuristic) makes for a short computation time

 -Heuristic can be altered to prioritise speed or reliability by weighting the g(n)

and h(n) value.

 -Takes cost of node into account

 -Is complete, so will always find a solution if it exists

Cons:

 -Uses a sizeable amount of memory

 -Worst case scenario offers no advantage over Dijkstra's algorithm

Breadth-First Search
Breadth-First Search (BFS) traverses from the start node and explores all of the

neighbour nodes at the current depth prior to moving to the next set of

neighbours. The modern version of this pathfinding algorithm was invented in

1959 by Edward Moore, and has since been used in social media friend

suggestion algorithms, GPS navigation systems, and peer-to-peer computer

networks.

Pros:

 -Easy to implement

 -Guaranteed to find the shortest path if all nodes on the graph are traversed

Cons:

 -Time taken is lengthy as BFS can only travel level by level

 -Does not take cost of node into account

 -Has to search every node on the graph

Complexity:

 -O(n) where ‘n’ is number of nodes

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 6 of 114

Greedy Best First Search
Greedy Best First Search expands the node which is closest to the goal node and

continues this pattern until the goal is reached. Uses the heuristic f(n) = h(n)

where h(n) is distance from goal. It is similar to Dijkstra’s algorithm, however, it

is not regularly used in computer programs due to it being unreliable in finding

the shortest path, albeit fast.

 Pros:

 -Very quick time to find path between two nodes if there are no obstacles in the

way

 -Simple to implement

 Cons:

 -Not guaranteed to find the shortest possible path

 -An obstacle/wall blocking the goal will greatly increase the time taken

 -Does not take the cost of a node into account

Who is my end-user?
Contact: matthewlang@lgs.slough.sch.uk

My end-user is a further maths teacher at my school who teaches pathfinding

algorithms, such as Dijkstra, to students annually. I have had a detailed

interview with him initially to obtain a deeper understanding of the objectives he

would like for me to meet in my project as well as what features my project

should contain so it could be of use to him as a teaching/learning tool for him

and his students. Throughout the course of this project I have consulted with

him for any additional advice or changes I would need to add to my project for it

to be more useful.

My project is also suitable to be used as a teaching as well learning tool for

computer science students. Pathfinders such as Dijkstra’s algorithm are part of

the further maths OCR MEI specification and is also an important topic in

computing. Since my project will demonstrate detailed instructions and

information on each pathfinding algorithm (including the data structures used), I

believe many students will greatly benefit from seeing algorithms, such as

Dijkstra’s and Breadth-First Search, run through their own user-created maze so

they can grasp a better understanding of the function and purpose of particular

pathfinders.

How was this problem researched?
In order to learn more about the problems involved in the usage of each

pathfinder and what the most commonplace pathfinding algorithms were, I

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 7 of 114

consulted various sources of information to gather information. These sources

included websites, interviews, prototyping, and a survey carried out personally.

The websites I found to be both accurate and detailed in their information on

this subject matter were (Patel, A., 2020. Amit’s A* Pages) and (A* Search

Algorithm - GeeksforGeeks, 2020) which are included among the list of websites

I have used in the references section of this document. Another website which I

greatly gained understanding of the different pathfinders from was

(PathFinding.js, 2020) which allow users to create their own start and goal

positions and run a large list of pathfinding algorithms on.

I have used prototyping during the process of my project as initially I had made

a single preset maze which ran all of the four primary pathfinding algorithms I

had decided on in conjunction with my end-user. I also have ensured that all

algorithms were working correctly on the initial graph of nodes and had followed

the characteristics of the algorithms according to the numerous website sources

I have used to gather information from. The use of prototyping during the

creation of my project was so that I could focus on the main objective and

functions in my list of objectives before completing supplementary goals of my

program.

Survey
To aid in the research of my pathfinding project, I had created a paper-based

survey which I had passed along to classmates and teachers in order to gather

data and information on what my primary objectives should be. Opportunity

sampling was used in order to choose the 20 people who completed my survey.

My survey took roughly six minutes to complete and included questions which

required both qualitative and quantitative answers. I had given each person a

short summary on what the subject matter of my project is and what it means. I

have also ensured that all questions asked were not leading questions and to not

show my personal bias.

Question 1)

Should my project should contain a guide on how each pathfinder

works?

Yes/No

Out of 20 people, 16 people chose ‘Yes’ whilst 4 people chose ‘No’.

This told me that an overwhelming majority of people would like to see an

instruction guide on how each pathfinder functions.

Question 2)

What is the reason for your answer to Question 1?

………………………………………………………………………………………………………

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 8 of 114

Most reasons stated for ‘Yes’ were that they had very basic or no existing

knowledge of the pathfinders used in my program, so as a user they would like

help on how to use my program and what it was doing. Another reason given

was that they would like a guide so they knew that I was informed on the

function of my program and fully understood the algorithms I was using.

The reason given for ‘No’ was that they believed that a guide was not vital to

my program’s use and assumed that anyone using my program would already

have knowledge on the subject matter at hand (Pathfinding Algorithms).

After reviewing the majority ‘Yes’ responses to the first question and the very

valid reasons given, I had added an instruction page as an objective to meet in

my program.

Question 3)

On a scale of 1-5 (5 being the most important), how important is it to

include different variations of the same pathfinding algorithm in my

project, e.g. D* (D Star) as a variation of A* (A Star)?

1 2 3 4 5

Out of 20 people: 9 people chose ‘2’, 5 people chose ‘3’, 3 people chose ‘1’, 3

people chose ‘4’, and no one chose ‘5’.

From these rankings, I was able to determine that the majority of people did not

see the inclusive of lesser known pathfinding algorithms, such as D*, as being

an important feature to my program. Therefore, I did not include variations of

Dijkstra, A Star, Breadth-First, and Greedy Best First in my list of objectives.

Furthermore, the lesser-known algorithms are not as popular as the four

mentioned above and are used less frequently in programs.

Question 4)

What information would you want to know from a pathfinding algorithm

that has been run?

………………………………………………………………………………………………………

The most common answer to this question was ‘speed’, which was to be

expected. Other different answers given were how many different ‘nodes’ the

pathfinder explored, and how many lines of code the algorithm was.

As a result of this information, I have added to the list of objectives to get a

value for ‘speed’ which is calculated from the values for ‘distance’ and ‘time’ I

get from the pathfinder (speed = distance/time). In addition to this, number of

nodes explored is also an objective in this program, however, I have not opted

to include ‘lines of code an algorithm takes’ because it is not at all a reliable

indicator of how efficient or fast a pathfinding algorithm is.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 9 of 114

Question 5)

Should my project include nodes of a different cost (nodes of different

distance values)?

Yes/No

Out of 20 people, 14 people chose ‘Yes’ and 6 people chose ‘No’.

This told me that the majority of people would like to see the option to include

nodes of a different cost in the graph.

Question 6)

What is the reason for your answer to Question 5?

………………………………………………………………………………………………………

Most reasons stated for the answer ‘Yes’ were that the option to include

different weighted nodes would allow my project to have more uses in the real

world. Another popular reason given was that this feature would allow the user

to see the benefits of Dijkstra’s algorithm and A* (A Star) search, which takes

the cost of node into account, whereas Breadth First Search and Greedy Best

First does not.

The only reason for ‘No’ that was given was that including nodes of a different

cost is unnecessary to the main functionality of my program.

Due to this information, I have decided to include having nodes of a different

cost in my list of objectives. I entirely agree with the people who voted ‘Yes’, I

also believe that it is very important to highlight the fact that Dijkstra’s

algorithm and A* search takes the cost of node into account, unlike Breadth First

Search and Greedy Best First. I disagree with the reason given for ‘No’, because

one of the aims of my program is to clearly show users the difference in function

between algorithms. Omitting the ability for the user to see if the pathfinding

algorithm can or cannot perform a task, such as taking cost of node into

consideration, is an important piece of information to demonstrate in my

program.

Question 7)

Would you rather have the graph of nodes displayed in a Two-

Dimensional or Three-Dimensional view?

………………………………………………………………………………………

Out of 20 people, 9 responded with ‘Two-Dimensional’ and 11 people

responded with ‘Three-Dimensional’.

This information told me that there was demand for both a three dimensional

and two-dimensional camera view as the results were almost evenly split. The

benefits of a 2D view is that it is easier for a user to navigate and see what is

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 10 of 114

happening on the whole graph of nodes clearly, whilst the benefits of 3D view is

that it is more visually appealing for the user and adds depth to each graph

making the pathfinder more ‘realistic’ to the user. From these results, I have

decided to include having the option of both a ‘Three-Dimensional’ and ‘Two-

Dimensional’ view for the user in my list of objectives.

Question 8)

Would a square graph with same width and height dimensions (3x3,

5x5, 25x25) or a rectangle graph of any width and height dimensions

(3x6, 5x5, 35x24) be better suited to my project?

………………………………………………………………………………………

Out of 20 people, 15 people responded with ‘Any Dimensions’ and only 5

people responded with ‘Fixed Dimensions’.

From this information I concluded that the user should be able to input the size

of their maze in ‘Any Dimensions’ because that would allow my program to be

more flexible in different scenarios that the user may want to model where the

graph is not a square. The only drawback to making the graph take any

dimension is that the user could input a width of 3 and height of 100, which

would create a peculiar looking maze that may be difficult to show clearly on one

screen using a 2D or 3D camera. As a result of this, I have added the user being

able to make a maze of any dimensions to my list of objectives, as well as a

zoom in, zoom out, and drag feature to my camera.

Interview
Before I began my project, my interview was carried out with a further maths

teacher at my school (Mr. Lang) who is familiar with pathfinding algorithms.

Contact: matthewlang@lgs.slough.sch.uk

Question 1: Which pathfinding algorithms should I include in my

project?

From this question, he was able to tell me that ‘Dijkstra’s algorithm’ and

mentioned ‘A Star pathfinding’ because those were the most ‘popular’

pathfinding algorithms that he was aware of, so I made sure to include these

two in my list of objectives. ‘Prim’s’ (a variation of Dijkstra) and ‘Kruskal’s’

algorithm were also brought up, as they were taught in the further maths

course. However, these two algorithms are for finding a minimum spanning tree

for a graph, and although they could be adapted into a shortest-path finding

algorithm, I felt they were not prevalent or distinct enough from Dijkstra and A

Star to be included in the list of objectives. With further discussion, he came up

with ‘Breadth first Search’ which is a very common algorithm used in computing

and for that reason I had also included it in my list of objectives.

mailto:matthewlang@lgs.slough.sch.uk

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 11 of 114

Question 2: What data would you like to see from a pathfinding

algorithm that has been run?

In our discussion regarding this question, he suggested that ‘time taken’,

‘number of nodes travelled’, and ‘distance travelled’, as important information to

be recorded. ‘Time taken’ is significant because how quickly algorithm completes

its task is a large factor in its consideration to be used. Similarly, ‘number of

nodes travelled’ shows how efficient the algorithm is in getting between two

points and travelling the least number of nodes, where a lower number of nodes

travelled means less memory is taken up, and is therefore less taxing on the

computer system. ‘Distance travelled’ is an important indicator to determine

whether the algorithm is working correctly to determine close to, or indeed the

shortest path, which is the ultimate aim of these pathfinding algorithms. Using

this information discussed in the survey, I have decided to add all of these as

objectives and data to record in my program. In addition to this, I have also

added the functionality of recording the ‘speed’ of each pathfinding algorithm by

dividing the ‘distance travelled’ by ‘time taken’. I have decided to add ‘speed’ to

show how ‘fast’ the algorithm travels through nodes in the graph.

Question 3: How would you like the data that was recorded to be

displayed for the different pathfinding algorithms?

Feedback from this question included discussing around the fact that a straight

list of the different information recorded could be too unclear and confusing for a

user because the abundance of information would be difficult for them to

compare and understand. So, to sort this problem that arose, he suggested that

a simple table showing all the pathfinding algorithms with their respective, time,

distance, and speed. Then these tables could be sorted based on the user’s

choice and ranked accordingly. As well as this feature, another suggestion was a

simple list showing the relevant information for all pathfinders on the side in the

order in which they were run. For pathfinders that have not been run yet, a

waring message reading ‘This pathfinder has not been run yet’ will display on the

table so the user is aware of what pathfinding algorithms they have already run

and which ones they have not. All these suggestions have been added to my list

of objectives for this program.

Question 4: How important is saving the results that a user has recorded

for their pathfinding algorithms?

In our discussion, he stated that saving the results of a user’s previous

pathfinding algorithm results was ‘extremely important’. The reasons given for

this were so that a user did not have to run every algorithm again every time

they wanted the results for a particular scenario. This will make the program

more user-friendly, and provide more incentive for users to use this program as

both a teaching and learning tool. The method in which to save these results

were also discussed, where the ideas of saving it internally in the app, externally

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 12 of 114

on excel, or perhaps a simple text file would be suitable. Saving the results

inside the application would allow it to be accessed again reliably, however, it

would be difficult to export out of the program if the user would want to use this

data in another form. Using these facts, I have decided to externally save the

results of the pathfinders of a maze into a text file named ‘Log.txt’ which will

display the graph parameters, as well as the results recorded for all the

pathfinders. I have decided upon this method because I believe it will be the

most convenient and useful for the user as they can export that data into an

excel (or any other application) if they choose to, giving more freedom and

usability over the program’s purpose.

Question 5: Do you believe you could use a program with the

functionalities of my program as a teaching tool?

Given the aim of my program, I desired for it to be both suitable as a learning

tool in computer science and further mathematics for people who are not too

familiar with pathfinding algorithms, so they can learn the purpose and

functionality of them through practical use and a visual demonstration, and for

complete beginners to pathfinding algorithms. From this question, he replied

that if I met all my objectives and ensured that the program was working both

correctly and clearly, that it would be very suitable to be a tool used in

classrooms that covered the topic of pathfinding algorithms. He suggested that

an instructions page be constructed in my program so a user would have no

further questions regarding the function or use of a particular pathfinding

algorithm as it all should be covered in the instructions page. As a result of this

information, I have added a detailed instruction page to my list of objectives for

this project.

Objectives
1. A main menu which the user can navigate through

a. A button to begin the making of the maze

b. A button to view the instructions of the program

2. An instructions page which can be accessed from the pathfinder and the

main menu

a. Information on the following topics to be displayed when clicked on:

i. About Program

ii. Dijkstra’s Algorithm

iii. Breadth-First Search

iv. Greedy Best First

v. Controls

b. For the main menu instruction page

i. Exit button to go back to main menu

c. For the pathfinder instruction page

i. Exit button to go back to selecting pathfinder

3. A settings page where the user can set the desired values for the maze

a. A button to go back to the main menu

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 13 of 114

b. A button to confirm the values and go on to the next page

c. A list of Integer variables with a default value which the user can

change (restricted between a certain range) that include:

i. Maze width

1. Default: 25

2. Range: 3-100

ii. Maze height

1. Default: 25

2. Range: 3-100

iii. Starting x-coordinate

1. Default: 0

2. Range: 0-99 below width minus one

iv. Start y-coordinate

1. Default: 0

2. Range: 0-99 and below height minus one

v. End x-coordinate

1. Default: 24

2. Range: 0-99 and below width minus one

vi. End y-coordinate

1. Default: 24

2. Range: 0-99 and below height minus one

d. A list of Boolean variables which the user can change that include:

i. Pathfinder exit on goal reached

1. Default: True

ii. Show arrows displaying the previous node where the

pathfinder traversed from

1. Default: True

iii. Allow the pathfinder to traverse in eight directions

1. Default: True (False means travels in four directions)

iv. Show the pathfinder as it traverses through the graph

1. Default: True (False means just the final path is

displayed)

e. A list of Float variables which the user can change that include

i. The size of the gap between adjacent nodes (border size)

1. Default: 0.1

2. Range: 0-0.5

ii. When show iterations is true, the time interval in seconds

between each step in the pathfinder

1. Default: 0.01

2. Range: 0.01-5

f. A dynamic display that shows what will happen in the case of each

Boolean variable being true or false with their descriptions being

changed accordingly

g. An error check for if any value entered is out of range when the

confirm button is clicked

h. An error check for the start and end nodes being the same

coordinate as that distance is always zero

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 14 of 114

i. A list of all erroneous values that have been inputted incorrectly by

the user to be displayed clearly.

j. An entry box next to each variable so the user can see the default

value as well as their edited one

k. Disable the time step entry box if the option to show iterations is

set to false.

4. A menu to select what type of maze type the user would like

a. Display all the parameters which the user has entered clearly onto a

list

b. A button for a preset maze

c. A button for a random maze

d. A button for a custom maze

e. An option to go back to the main menu

f. A button to confirm the choice of maze type

g. An error check to remind the user if they have not selected an

option

5. A preset maze menu from which the user can select premade graphs

a. An accurate picture of the preset maze displayed next to the option

to select the respective maze

b. Description below each preset maze displaying its width, height,

starting x coordinate, starting y coordinate, ending x-coordinate,

and ending y-coordinate.

c. Premade maze types

i. A simple perfect maze

ii. A maze with a few small gaps awkwardly placed to test the

pathfinder

iii. A massive maze with a straight path to the goal as well as a

winding path

iv. A maze with straight paths to the goal but with different

weights on each path

d. A button to go back to the previous maze type selection menu

e. A button to confirm the choice of preset maze

f. An error check to remind the user if they have not selected an

option

g. A warning that their custom variable values for the width, height,

starting x coordinate, starting y coordinate, ending x-coordinate,

and ending y-coordinate will not be used in the preset maze

h. A scrollable window to select these maze presets from

6. A random maze menu from which the user can select different types of

random mazes

a. An example of the random maze displayed next to the option to

select the respective maze

b. Random maze types

i. A dense random maze (33% chance of a wall)

ii. A sparse random maze (25% chance of a wall)

iii. A very sparse random maze (20% chance of a wall)

c. A short description below each random maze displaying the

likelihood of a node being a wall.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 15 of 114

d. A button to go back to the previous maze type selection menu

e. A button to confirm the choice of random maze

f. An error check to remind the user if they have not selected an

option

g. A scrollable window to select the random maze type from

h. A list of parameters set by the user displayed clearly on the screen

7. A custom maze menu where the user can create their own customised

graph

a. Instructions on how to use the custom maze editor

b. A key displaying all the node type distances and behaviour

c. A palette from which the user can choose their desired node type

which includes:

i. Blocked (black); cannot be traversed by the pathfinder

ii. Open node (white); horizontal/vertical distance of one

(default)

iii. Light terrain node (light brown): horizontal/vertical distance

of two

iv. Medium terrain node (brown): horizontal/vertical distance of

three

v. Heavy terrain node (dark brown): horizontal/vertical distance

of four

vi. Very heavy terrain node (very dark brown):

horizontal/vertical distance of five

d. A graph accurate to the width and height of the variable values

entered, showing the graph of nodes as a grid of white squares,

except for the start node which is green, and the goal node which is

red.

i. The start and goal nodes cannot be edited so the pathfinder

will always have a start and a goal

e. Allow the user to zoom in and out the graph (using the scroll

wheel), drag across the graph (clicking the scroll wheel), and reset

the graph by using the right mouse button

f. The user can edit the graph by holding and dragging the left mouse

button across the desired nodes in the graph, which will then

change to the node type selected in the palette

g. A button to go back to the previous maze type selection menu

h. A button to confirm and create the custom maze that was drawn

8. A menu from which the desired pathfinder to be run can be selected by

the user

a. A button to go to the instructions page

b. A button to confirm the pathfinder selected

c. An error check to remind the user if they have not selected an

option

d. Buttons for each pathfinder in the program that include:

i. Dijkstra’s Algorithm

ii. A* (A Star)

iii. Breadth First Search

iv. Greedy Best First

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 16 of 114

e. Relevant information with a short summary of each pathfinder to be

displayed clearly when the mouse is hovered over the relevant

pathfinder

9. The screen for which the pathfinder is carried out on the maze selected by

the user

a. A fully modelled three-dimensional graph that the pathfinder will be

carried out on with shadows and dynamic lighting from a light

source

b. Various buttons to change/view settings:

i. ‘Toggle parameters’ which will display the variable setting

that were set by the user

1. A key that displays the meaning of the colours on the

graph that include:

a. Blocked node (black) which the pathfinder

cannot traverse through

b. Open node (white) which has horizontal/vertical

distance of one

c. Explored node (light grey) which shows nodes

that the pathfinder has explored

d. Neighbour node (light blue) which shows nodes

that are neighbouring the explored nodes of the

pathfinder (next to be explored by the

pathfinder)

e. Path nodes (orange) which show the final path

determined by the pathfinding algorithm

f. Start node (green) which shows the position in

the graph where the pathfinder starts from

g. Goal node (red) which shows the position in the

graph the pathfinding algorithm ends at

h. Old neighbour (dark blue) which shows the

neighbouring node of the previous pathfinding

algorithm that was run

i. Old explored (dark grey) which shows the old

nodes which the previous pathfinder had

explored

ii. ‘Select another pathfinder’ that will allow the user to select

another pathfinder to run

iii. ‘Toggle results’ will show the user the time taken, distance

travelled, speed, and nodes explored for the pathfinders that

have been run, (in order in which they were run) in a

scrollable list

1. A button to return back to menu will appear

a. A warning displaying that the current maze data

will be lost if the pathfinders have not all been

run yet

2. A button to toggle the information on the various

pathfinders

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 17 of 114

a. Dynamic table with the ability to sort by

distance, time, or speed where the rankings of

each algorithm will be shown

b. Algorithms that have not been run will display a

reminder that they have not been selected yet

iv. A 3-d/2-d camera option that will change the view of the

graph from a top-down two-dimensional view of the graph, to

that of a fully modelled three-dimensional view of the graph,

or vice versa

1. Two-dimensional camera will be default when the

program is first run for the clearest view of the graph

for the user

2. Allow the user to zoom in and out the graph (using the

scroll wheel), drag across the graph (clicking the scroll

wheel), and reset the graph by using the right mouse

button

3. Three-dimensional camera will pivot around the centre

point of the graph and rotate horizontally and

vertically according to the mouse’s movement. Prevent

the user from rotating the camera below the horizontal

x axis of the graph.

4. The three-dimensional camera can be zoomed in and

out using the scroll wheel

v. A pause/play button that will pause the timer and the

pathfinder while it is being run, whilst also maintaining the

functionality of both dimensional camera types

vi. A drop-down menu where the user can change various

graphical settings that include:

1. Direction of light incident on the graph which will

change the appearance of shadows

2. The colour of the background which can be changed by

the user from the default grey to any RGB value

c. A button to select another pathfinder to carry out on the maze

10. The program will save all relevant information in an external text file

when all pathfinding algorithms have been run

a. Create external text file named ‘Log.txt’ when all the pathfinding

algorithms have been run if a ‘Log.txt’ file does not already exist

b. Record the date and time at which the set of pathfinding algorithms

were run

c. Record the variable values that were set by the user for the maze in

question

d. Record all the time taken, distance travelled, speed, and nodes

explored into the text file

e. Save/Update the text file in ‘Log.txt’ which will be created next to

the program file

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 18 of 114

Modelling of pathfinding algorithms

Dijkstra’s Algorithm

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 19 of 114

A* (A Star) Search

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 20 of 114

Documented Design

How does the system work?
To make my program, I have decided to use Unity, a real-time development

platform. I have settled upon Unity because of its great capabilities in 3D

modelling and I believe that having a 3d display for my maze to showcase the

pathfinders is very important to clearly display the function of the different

pathfinding algorithms. Another reason for using Unity is because of the

capability of designing clear and navigable user interface so people not too

familiar with computer programs can still use my project. My entire code has

been written in C# and uses Object Oriented Programming.

Pseudocode:

Dijkstra’s Algorithm
1) Create a set X (shortest path tree set) that keeps track of
vertices included in shortest path tree, i.e., whose minimum
distance from source is calculated and finalized. Initially, this
set is empty.

2) Assign a distance value to all vertices in the input graph.
Initialize all distance values as INFINITE. Assign distance value as
0 for the source vertex so that it is picked first.

3) While X doesn’t include all vertices
 a) Pick a vertex u which is not there in X and has minimum
distance value.
 b) Include u to X.
 c) Update distance value of all adjacent vertices of u. To
update the distance values, iterate through all adjacent vertices.
For every adjacent vertex v, if sum of distance value of u (from
source) and weight of edge u-v, is less than the distance value of
v, then update the distance value of v.

End

A* (A Star)
1. Initialize the open list

2. Initialize the closed list

 put the starting node on the open

 list (you can leave its f at zero)

3. while the open list is not empty

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 21 of 114

 a) find the node with the least f on
 the open list, call it "q"

 b) pop q off the open list

 c) generate q's 8 successors and set their
 parents to q

 d) for each successor
 i) if successor is the goal, stop search
 successor.g = q.g + distance between
 successor and q
 successor.h = distance from goal to
 successor (This can be done using many
 ways, we will discuss three heuristics-
 Manhattan, Diagonal and Euclidean
 Heuristics)

 successor.f = successor.g + successor.h

 ii) if a node with the same position as
 successor is in the OPEN list which has a
 lower f than successor, skip this successor

 iii) if a node with the same position as
 successor is in the CLOSED list which has
 a lower f than successor, skip this successor
 otherwise, add the node to the open list
 End (for loop)

 e) push q on the closed list
 End (while loop)

Greedy Best First Search
 1) Create an empty PriorityQueue
 PriorityQueue X;
 2) Insert "start" in X.
 X.insert(start)
 3) Until PriorityQueue is empty
 u = PriorityQueue.DeleteMin
 If u is the goal
 Exit
 Else
 Foreach neighbour v of u
 If v "Unvisited"
 Mark v "Visited"
 X.insert(v)
 Mark u "Examined"

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 22 of 114

End

Breadth-First Search
BFS (G, s) //Where G is the graph and s is the source node
 let Q be queue.
 Q.enqueue(s) //Inserting s in queue until all its neighbour
vertices are marked.

 mark s as visited.
 while (Q is not empty) //Removing that vertex from queue,
whose neighbour will be visited now
 v = Q.dequeue() //processing all the neighbours of v
 for all neighbours w of v in Graph G
 if w is not visited
 Q.enqueue(w) //Stores w in Q to further
visit its neighbour
 mark w as visited.

Data Structures

Lists
I have used a Lists in my program to store information of the nodes for the

pathfinding algorithms which need to check which nodes have been previously

visited. The lists will simply store which nodes each separate pathfinder has

traversed and store this value into a file. Another reason for using a list is to

store all the nodes which are determined to be a wall and therefore not

traversable.

Graphs
I have used a graph to connect all the nodes together so the pathfinding

algorithms can determine which nodes are traversable and which are not, based

on the user’s choice (eight-directions/four-directions). Without a graph, the

pathfinders would not be able to function correctly.

Queues
I have used a queue, specifically priority queue, so pathfinding algorithms such

as Dijkstra’s and A Star search algorithm, which takes the cost (distance) of a

certain node into account for determining a shortest path, can order the order in

which the nodes should be traversed. The priority queue is also used to rank the

nodes to travel, regardless of the order of insertion, by using the heuristic

present in A Star search and Greedy Best First search.

Multi-dimensional Array
My program uses two-dimensional arrays to store the x and y coordinate of

every node in a graph. It is used to determine how many nodes are in the graph

and the limits of the graph.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 23 of 114

Dictionary
A dictionary is used in my program to define the different type of nodes, such as

light terrain, medium terrain, heavy terrain, open node, blocked node etc. A

dictionary is used so when the appropriate key of a node is received, the correct

node type can be returned

Variables
My program uses a large number of variables including integers, floats,

decimals, string, and boolean to store and define multiple parts of the project.

File Structure
My program creates an external file, when all the pathfinding algorithms have

been run. First my project creates an external text file named ‘Log.txt’ if a

‘Log.txt’ file does not already exist. Then the date and time at which the set of

pathfinding algorithms were run is recorded. After that, it records the variable

values that were set by the user for the maze in question and all the time taken,

distance travelled, speed, and nodes explored values into the text file. ‘Log.txt’

which will be created next to the program file. (Pictured below is an example)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 24 of 114

Structure diagram
This diagram showcased the arrangement and layout of all the menus in my

program and how they interconnect with one another. Menus displayed with a

single arrow are one way, whereas double arrows indicate that the menus can

lead back to each other (main menu and instructions).

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 25 of 114

HCI (Human Computer Interaction)

Main Menu
The main menu is very simple with three options for the user to click, and like all

menus can be navigated by using the mouse. The background is a scrolling

example image of what a maze the user might generate could look like, to give

the user an idea of what to expect from my project, I have chosen the large

distinct buttons of ‘begin pathfinder’ and ‘instructions’ so the user is not

overwhelmed by a large variety of options. A short description of what the

button will do when clicked on is displayed on the bottom panel, with the name

of the project and my name on the top panel. The small exit button is in the

bottom left corner so it is not accidentally clicked on by the user.

Instructions Page
The instructions page has six different panels where if the user clicks on a panel,

the relevant information based on that subject is shown. There is a light blue

background to make sure the background is not too plain and boring for a user

who is looking to learn. There is also an option to go back to the menu for the

user.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 26 of 114

Settings Page
The settings page has all the parameters which the user can edit clearly

displayed in five sections (maze dimensions, start coordinates, goal coordinates,

Behaviour of pathfinder, and visual settings). The behaviour of pathfinder

section is all boolean, and the description on the right of it will change based on

if the box is ticked or not by the user. The description boxes show relevant

description and ranges of each setting, and the image at the top right will

indicate whether the pathfinders can travel in four or eight directions. The user

is able to input their number in the space with the grey italic text where if they

click ‘confirm’ and do not change the number, the default value is used. When

the user clicks on ‘confirm’ and an erroneous value is inputted, there will be a

list to the right of the screen, in bold red, of all the parameters which are

incorrect. The user is also able to go back to the main menu if they wish to exit

the program, reset the values, or go to the instructions page.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 27 of 114

Maze Type Selection
On this page all the user parameters which were entered on the previous

settings page will be displayed on the right panel. The three clear options of the

maze type will able to be selected and then ‘confirmed’ by the user to enter that

section of the program. This is so the user does not click on an option by

accident without reading through all the options.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 28 of 114

Preset/Random Maze Menu
The Preset/Random page are similarly laid out for the user to maintain

consistency and familiarity throughout the program. There are several options in

both menus of the type of maze the user would like to generate with further

information about the mazes to a panel on the right of a picture showing an

example of the relevant maze. There is a far right panel which for the preset

maze, reminds the user that their own entered values for the width and height of

the maze will not be used as they are selecting a premade maze, whilst for the

random maze this panel again displays all the parameters which the user has

chosen earlier in the settings page. The user is able to scroll through the list of

mazes, select one, and click ‘confirm’ to proceed with the program.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 29 of 114

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 30 of 114

Custom Maze Menu
This page has functionality similar to a painting application where the user is

able to ‘draw’ the maze of their choice on the grid they set earlier in the settings

page. A key is available for the user to see what the different nodes mean, as

well as instructions on the far-right panel so the user knows how to draw their

maze. When a node type is selected from the panel on the right, the user can

draw this node type on the initially blank maze by holding and dragging their

mouse over the nodes they desire, the start and goal nodes cannot be edited

and are shown clearly by green and red respectively. The user is also able to

zoom in and out using the scroll wheel on their mouse.

Pathfinder Choosing Menu
This menu has a link to the instructions page if the user wishes to view it, and displays information

on the four pathfinders in the far-right panel when a pathfinder is hovered over by the cursor. The

user can easily select the pathfinder of their choice and click ‘confirm’ to proceed with the program.

There is an error check, like on all these menus, to ensure the user has indeed selected an option

before clicking ‘confirm’.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 31 of 114

Pathfinders are run
When a pathfinder has been selected, the user will be brought to this page which

initially displays the pathfinder being run clearly on a 2d graph. However, there

are many easily accessible options for the user to edit the look and function of

this page by, pausing the pathfinder by using the pause button. The user can

also change the background colour and light direction in the project. Select

another pathfinder will bring the user to the previous menu, and the 3-d camera

option at the bottom-middle will change the camera view to three dimensions.

The user can navigate the 2d camera view by using the scroll wheel to zoom in

and out, left clicking and dragging to move the camera view across the maze,

and right clicking to reset the camera position. The 3d camera pivots around the

centre of the maze and can be zoomed in/out using the scroll wheel. The results

of the pathfinder which have been run are displayed on a collapsible, scrollable

panel on the right whereas the parameters set for the maze are shown on a

collapsible panel on the left. The ‘toggle information button’ will clearly show to

the user all the pathfinders which have been run in a ranking of ‘time’,

‘distance’, or ‘speed’, according to the user’s choice. This menu is also navigable

using the arrow keys and spacebar button as convenience for the user. There is

also a warning page for the user if they click the ‘Back to main menu button’ to

prevent them exiting the current pathfinder by accident.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 32 of 114

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 33 of 114

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 34 of 114

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 35 of 114

Unity Engine Interface

Here is an example of the interface I used to create this program, in Unity.

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 36 of 114

Technical Solution:

Background Colour Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class BackgroundColour : MonoBehaviour
{
 //Assigning the Sliders' values to relevant variable
 public Slider red;
 public Slider green;
 public Slider blue;

 //Setting default background colour values
 public float redColour = 0.4f;
 public float greenColour = 0.4f;
 public float blueColour = 0.4f;

 //When the Slider value is changed
 public void OnEdit()
 {
 //Updates the values of each Slider respectively
 redColour = red.value;
 greenColour = green.value;
 blueColour = blue.value;

 //Assigns these values to the background colour
 Camera.main.backgroundColor = new Color(redColour,greenColour,blueColour);
 }
}

Background Rotation Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class BackgroundRotation : MonoBehaviour
{
 //Assigns the background image
 public GameObject backgroundImage;

 // Update is called once per frame
 void Update()
 {
 //When the background image is visible, rotate it slowly around the z-axis
 if (backgroundImage.activeInHierarchy == true)
 {
 backgroundImage.transform.Rotate(0, 0, 0.33f);
 }
 }
}

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 37 of 114

Camera Control Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;

public class CameraControl : MonoBehaviour
{
 //Declaring coordinates of each variable (0,0,0)
 private Vector3 ResetCamera;
 private Vector3 Origin;
 private Vector3 Diference;
 protected Vector3 _LocalRotation;

 //Assigns a gameobject to each variable
 public GameObject canvasCustom;
 public GameObject ThreeDimButton;
 public GameObject TwoDimButton;
 public GameObject Pivot;

 //Declaring values of camera control using a mouse
 public float MouseSensitivity = 4f;
 public float ScrollSensitvity = 2f;
 public float OrbitDampening = 10f;
 public float ScrollDampening = 6f;
 protected float _CameraDistance = 10f;

 protected Transform _XForm_Camera;
 protected Transform _XForm_Parent;

 //Declaring the camera being draggable as false
 private bool Drag = false;

 //Declaring the default variable values
 public int height;
 public int width;

 //Called when the program is initialised
 private void Start()
 {
 this._XForm_Camera = this.transform;
 this._XForm_Parent = this.transform.parent;
 }

 //Called once a frame
 void LateUpdate()
 {
 //Check for if the right menu is open
 if (GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom
== true && ThreeDimButton.activeInHierarchy == true ||
 canvasCustom.activeInHierarchy == true &&
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom == false)
 {
 //Miiddle MouseButton/Scroll Wheel is pressed
 if (Input.GetMouseButton(2))
 {
 //Check for if the mouse is not over a UI component
 if (!EventSystem.current.IsPointerOverGameObject())
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 38 of 114

 //Get the value for how far the mouse has dragged from its
original position
 Diference = (Camera.main.ScreenToWorldPoint(Input.mousePosition))
- Camera.main.transform.position;
 if (Drag == false)
 {
 //Setting the camera to draggable
 Drag = true;
 Origin = Camera.main.ScreenToWorldPoint(Input.mousePosition);
 }
 }
 }
 else
 {
 //Set camera draggable to false
 Drag = false;
 }

 //Check for if camera is draggable
 if (Drag == true)
 {
 //Move the camera according to the drag direction
 Camera.main.transform.position = Origin - Diference;
 }

 //Check for if camera zoom is enabled
 if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom == true)
 {
 //Reset camera to starting position on right-click
 if (Input.GetMouseButton(1))
 {
 //Reset camera Vector3 Coordinate
 Camera.main.transform.position = ResetCamera;
 //Reset camera zoom
 Camera.main.orthographicSize = (height / 2 + 5);
 }
 }
 else
 {
 //Reset camera to starting position on right-click
 if (Input.GetMouseButton(1))
 {
 //Reset camera Vector3 Coordinate
 Camera.main.transform.localPosition = new Vector3(-510, 385, 950);
 //Reset camera zoom
 Camera.main.orthographicSize = (385);
 }
 }
 }
 }

 //Update is called once per frame
 public void Update()
 {
 //Check for if the camera is in three-dimensional mode
 if (GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom
== true && TwoDimButton.activeInHierarchy == true)
 {
 //Check for if the camera is in orthographic view
 if (Camera.main.orthographic == true)
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 39 of 114

 //Change camera to perspective view
 Camera.main.orthographic = false;
 //Set 3D camera rotation to zero and position to the origin
 Camera.main.transform.eulerAngles = new Vector3(0, 0, 0);
 Camera.main.transform.localEulerAngles = new Vector3(0, 0, 0);
 Camera.main.transform.position = new Vector3(0, 0, 0);

 //Move the camera's position to the center of the graph of nodes
 Pivot.transform.position = new Vector3((width - 1) / 2, 2, (height -
1) / 2);

 }
 //Rotation of the Camera based on Mouse Coordinates
 if (Input.GetAxis("Mouse X") != 0 || Input.GetAxis("Mouse Y") != 0)
 {
 _LocalRotation.x += Input.GetAxis("Mouse X") * MouseSensitivity;
 _LocalRotation.y += Input.GetAxis("Mouse Y") * MouseSensitivity;

//Clamp the y Rotation to horizontal so it does not flip over and see
under the graph of nodes

 if (_LocalRotation.y < 0f)
 _LocalRotation.y = 0f;
 else if (_LocalRotation.y > 90f)
 _LocalRotation.y = 90f;
 }
 //Zooming Input from our Mouse Scroll Wheel
 if (Input.GetAxis("Mouse ScrollWheel") != 0f)
 {
 //Declaring the amount at which the zoom function should zoom in the
camera
 float ScrollAmount = Input.GetAxis("Mouse ScrollWheel") *
ScrollSensitvity;
 ScrollAmount *= (this._CameraDistance * 0.3f);
 this._CameraDistance += ScrollAmount * -1f;

 //Setting the maximum and minimum zoom of the camera
 this._CameraDistance = Mathf.Clamp(this._CameraDistance, 2f, 100f);
 }

 //Transformations/Movement of the camera
 Quaternion QT = Quaternion.Euler(_LocalRotation.y, _LocalRotation.x, 0);
 this._XForm_Parent.rotation = Quaternion.Lerp(this._XForm_Parent.rotation,
QT, Time.unscaledDeltaTime * OrbitDampening);

//Smoothly move the camera's position along the z-axis based on the
mouse's movement

 if (this._XForm_Camera.localPosition.z != this._CameraDistance * -1f)
 {
 this._XForm_Camera.localPosition = new Vector3(0f, 0f, Mathf.Lerp
 (this._XForm_Camera.localPosition.z, this._CameraDistance * -1f,
Time.unscaledDeltaTime * ScrollDampening));
 }
 }

 //Check for if the camera is in two-dimensional mode
 if (GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom
== true && ThreeDimButton.activeInHierarchy == true)
 {
 //Check for if the camera is in perspective view
 if (Camera.main.orthographic == false)
 {
 //Change camera view to orthographic view

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 40 of 114

 Camera.main.orthographic = true;

 //Declaring the rotation of the orthographic camera
 Camera.main.transform.eulerAngles = new Vector3(90, 0, 0);
 CameraController();
 }
 //Check for if mouse is not over a UI component
 if (!EventSystem.current.IsPointerOverGameObject())
 {
 //Check if scroll wheel is scrolled forwards
 if (Input.GetAxis("Mouse ScrollWheel") > 0)
 {
 //Zoom in by two units

ZoomOrthoCamera(Camera.main.ScreenToWorldPoint(Input.mousePosition), 2f);
 }

 //Check if scroll wheel is scrolled backwards
 if (Input.GetAxis("Mouse ScrollWheel") < 0)
 {
 //Zoom out by two units

ZoomOrthoCamera(Camera.main.ScreenToWorldPoint(Input.mousePosition), -2f);
 }
 }
 }

 //Check for if the custom maze menu is open
 else if (canvasCustom.activeInHierarchy == true &&
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom == false)
 {

 //Check for if mouse is not over a UI component
 if (!EventSystem.current.IsPointerOverGameObject())
 {
 //Check if scroll wheel is scrolled forwards
 if (Input.GetAxis("Mouse ScrollWheel") > 0)
 {
 //Zoom in by twenty five units

ZoomOrthoCamera(Camera.main.ScreenToWorldPoint(Input.mousePosition), 25f);
 }

 //Check if scroll wheel is scrolled backwards
 if (Input.GetAxis("Mouse ScrollWheel") < 0)
 {
 //Zoom out by twenty five units

ZoomOrthoCamera(Camera.main.ScreenToWorldPoint(Input.mousePosition), -25f);
 }
 }
 }
 }

 //Declares the default position and rotation of the camera according to the graph
size
 public void CameraController()
 {
 //Declaring width and height of graph
 width =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().width;
 height =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().height;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 41 of 114

 //Declaring default rotation of camera and finding the midpoint of the graph
 Camera.main.transform.eulerAngles = new Vector3(90, 0, 0);
 Camera.main.transform.position = new Vector3(((width - 1) / 2) + 0.5f, 5,
(height - 1) / 2);
 //Storing the midpoint of the graph
 ResetCamera = Camera.main.transform.position;

 // Aligns the camera size with the dimension of the grid of nodes, allowing
the user to clearly see the whole grid
 Camera.main.orthographicSize = (height / 2 +5);
 }

 //Zooming in and out the two-dimensional camera
 void ZoomOrthoCamera(Vector3 zoomTowards, float amount)
 {
 //Check if camera zoom is enabled
 if (GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom
== true)
 {
 // Zoom camera out
 Camera.main.orthographicSize -= amount;

 // Limit zoom of the camera
 Camera.main.orthographicSize = Mathf.Clamp(Camera.main.orthographicSize,
3, 55);
 }

 //Check if the custom maze menu is open
 else if (canvasCustom.activeInHierarchy == true)
 {
 // Zoom camera
 Camera.main.orthographicSize -= amount;

 // Limit zoom of the camera
 Camera.main.orthographicSize = Mathf.Clamp(Camera.main.orthographicSize,
100, 385);
 }
 }
}

Change Camera Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ChangeCamera : MonoBehaviour
{
 //Assigning Gameobjects to each variable
 public GameObject TwoDimButton;
 public GameObject ThreeDimButton;

 //Called when the camera three-dimensional mode is turned on
 public void ThreeDim()
 {
 //Hide the button for three-dimensional mode and show the button for two-
dimensional mode
 ThreeDimButton.SetActive(false);
 TwoDimButton.SetActive(true);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 42 of 114

 }

 //Called when the camera two-dimensional mode is turned on
 public void TwoDim()
 {
 //Hide the button for two-dimensional mode and show the button for three-
dimensional mode
 TwoDimButton.SetActive(false);
 ThreeDimButton.SetActive(true);
 }
}

Demo Controller Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class DemoController : MonoBehaviour
{
 //Assigning Gameobjects with scripts to each variable
 public MapData mapData;
 public Graph graph;
 public Pathfinder pathfinder;

 //Declaring default variable values
 public int startX;
 public int startY;
 public int goalX;
 public int goalY;
 public int pass = 0;
 public float timeStep;

 //Two-dimensional array to store the dimensions of graph of nodes
 public int[,] mapInstance;

 //Called when the maze is created
 public void BeginMaze()
 {
 //Declare all the variable to what the user has inputted in the setting menu
 int startX =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().startX;
 int startY =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().startY;
 int goalX =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().goalX;
 int goalY =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().goalY;
 int width =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().width;
 int height =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().height;

 //Check if a subsequent pathfinding algortihm is being run
 if (pass >= 1)
 {
 //For all nodes in the graph
 for (int row = 0; row < height; row++)
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 43 of 114

 for (int col = 0; col < width; col++)
 {
 //Destroy the node in the graph (to save memory space)
 GameObject toDestroy = GameObject.Find("Node (" + row + "," + col
+ ")");
 Destroy(toDestroy);
 }
 }
 }

 //Check if there is mapdata and a graph
 if (mapData != null && graph != null)
 {
 //Check if the graph of nodes has been created yet
 if (pass == 0)
 {
 //Collect data for graph of nodes
 mapInstance = mapData.MakeMap();
 }

 //Initialise the graph of nodes
 graph.Init(mapInstance);
 //Assign the script of the graphview to a gameobject
 GraphView graphView = graph.gameObject.GetComponent<GraphView>();

 //Check whether the graphview script is attached
 if (graphView != null)
 {
 //Initialise the graph of nodes
 graphView.Init(graph);
 }
 //If the graph has valid dimensions
 if (graph.IsWithinBounds(startX, startY) && graph.IsWithinBounds(goalX,
goalY))
 {
 //Set the start and goal coordinates of the graph
 Node startNode = graph.nodes[startX, startY];
 Node goalNode = graph.nodes[goalX, goalY];

 //Initialise the pathfinder with the variables above
 pathfinder.Init(graph, graphView, startNode, goalNode);

 //Begin the pathfinder
 StartCoroutine(pathfinder.SearchRoutine(timeStep));
 }

 //Check if the pathfinder is being run for the first time
 if (pass == 0)
 {
 //Sort the information of the pathfinder by shortest distance

GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().SortDistanceUpdate
();
 }
 }
 //Set the camera settings (position, rotation, mode)
 GameObject.Find("Camera1").GetComponent<CameraControl>().CameraController();
 //Increment the number of times a pathfinder has been run
 pass += 1;
 }
}

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 44 of 114

Graph Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

//Class used to manage the entire set of nodes
public class Graph : MonoBehaviour
{
 //Default the variable eight directions as true
 public bool eightDir = true;

 //Two dimensional array to hold each node's coordinates
 public Node[,] nodes;
 int[,] m_mapData;

 //List to hold all the wall/blocked nodes in the graph
 public List<Node> walls = new List<Node>();

 //Get and return the width and height of the graph of nodes
 int m_width;
 public int Width { get { return m_width; } }
 int m_height;
 public int Height { get { return m_height; } }

 //List of two dimensional vectors in eight directions
 public Vector2[] eightDirections =
 {
 //horizontal and vertical
 new Vector2(0f,1f),
 new Vector2(1f,0f),
 new Vector2(0f,-1f),
 new Vector2(-1f,0f),
 //diagonals
 new Vector2(1f,1f),
 new Vector2(1f,-1f),
 new Vector2(-1f,-1f),
 new Vector2(-1f,1f),
 };

 //List of two dimensional vectors in eight directions
 public Vector2[] fourDirections =
 {
 //horizontal and vertical
 new Vector2(0f,1f),
 new Vector2(1f,0f),
 new Vector2(0f,-1f),
 new Vector2(-1f,0f),
 };

 //Initialises the graph of nodes using the mapdata
 public void Init(int[,] mapData)
 {
 //Store the mapdata
 m_mapData = mapData;
 //Gets length of x-values in two dimensional array
 m_width = mapData.GetLength(0);
 //Gets length of y-values in two dimensional array
 m_height = mapData.GetLength(1);

 //Initialises the array
 nodes = new Node[m_width, m_height];

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 45 of 114

 //For each(x,y) position in the array
 for (int y = 0; y < m_height; y++)
 {
 for(int x = 0; x < m_width; x++)
 {
 //Set the node type based on information from mapdata
 NodeType type = (NodeType)mapData[x, y];

 //Generate a new node and store it in the array
 Node newNode = new Node(x, y, type);
 nodes[x, y] = newNode;

 //Set the Vector3 (x,y,z) position of the node
 newNode.position = new Vector3(x, 0, y);

 //Check if the node type is blocked
 if (type == NodeType.Blocked)
 {
 //Store the blocked node in the list of walls
 walls.Add((newNode));
 }
 }
 }

 //Determine the neighbouring nodes for each node in the array
 for (int y=0; y < m_height; y++)
 {
 for (int x = 0; x < m_width; x++)
 {
 //Check to see if the neighbouring node is not a wall/blocked
 if (nodes[x,y].nodeType != NodeType.Blocked)
 {
 //Stores the neighbours which are not walls
 nodes[x, y].neighbours = GetNeighbours(x, y);
 }
 }
 }
 }

 //Check to see if the coordinates of a neighbouring node is in the graph
 public bool IsWithinBounds(int x, int y)
 {
 return (x >= 0 && x < m_width && y >= 0 && y < m_height);
 }

 //Returns a list of neighbouring nodes based on the node's coordinates and number
of directions
 List<Node> GetNeighbours(int x, int y, Node[,] nodeArray, Vector2[] directions)
 {
 //Creates a new empty list of nodes
 List<Node> neighbourNodes = new List<Node>();

 //In either four or eight directions
 foreach (Vector2 dir in directions)
 {
 //Find the offset in both the x and y direction between the nodes
 int newX = x + (int)dir.x;
 int newY = y + (int)dir.y;

 //If this new node position is within the graph and not blocked, add it to
the list of neighbours

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 46 of 114

 if (IsWithinBounds(newX,newY) && nodeArray[newX,newY] != null &&
 nodeArray[newX,newY].nodeType != NodeType.Blocked)
 {
 neighbourNodes.Add(nodeArray[newX, newY]);
 }
 }
 //Returns the list of neighbours to a node
 return neighbourNodes;
 }

 //Returns the list of neighbouring nodes
 List<Node> GetNeighbours(int x, int y)
 {
 //Check if eight directions is set to either true or false
 eightDir =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().eightDirections;
 if (eightDir == true)
 {
 //Return list of neighbouring nodes in eight directions
 return GetNeighbours(x, y, nodes, eightDirections);
 }
 else
 {
 //Return list of neighbouring nodes in four directions
 return GetNeighbours(x, y, nodes, fourDirections);
 }
 }

 //Get the approximate distance between nodes (square root of two has been
approximated to 1.41421356)
 public float GetNodeDistance(Node source, Node target)
 {
 //Find difference in x distance and y distance
 float dx = Mathf.Abs(source.xIndex - target.xIndex);
 float dy = Mathf.Abs(source.yIndex - target.yIndex);

 //Find which of these two differences are larger and smaller
 float min = Mathf.Min(dx, dy);
 float max = Mathf.Max(dx, dy);

 //Find the diagonal and straight steps needed from start to goal
 float diagonalSteps = min;
 float straightSteps = max - min;

 //Measures distance from current node to goal node
 return (1.41421356f* diagonalSteps) + straightSteps;
 }
}

Graph View Code:
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using UnityEngine;

//User interface in unity used to represent a set of nodeviw, which is attached to the
graph gameobject
[RequireComponent(typeof(Graph))]
public class GraphView : MonoBehaviour
{

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 47 of 114

 //Node object with existing dimensions and components
 public GameObject nodeViewPrefab;

 //Two-dimensional array of nodeviews
 public NodeView[,] nodeViews;

 //Colours of all the different node tpes
 public Color openColor = Color.white;
 public Color wallColor = Color.black;
 public Color lightTerrainColor = new Color32(236,198,164,255);
 public Color mediumTerrainColor = new Color32(188,142,100,255);
 public Color heavyTerrainColor = new Color32(148,98,60,255);
 public Color veryHeavyTerrainColor = new Color32(100,70,44,255);

 //Called before the program begins
 private void Awake()
 {
 //Calls the dictionary of node types
 SetupLookupTable();
 }
 //Creates a dictionary of the node type and the colours associated
 Dictionary<Color, NodeType> terrainLookupTable = new Dictionary<Color,
NodeType>();

 //Initialise using the graph script
 public void Init(Graph graph)
 {
 //Error check to see if graph exists
 if(graph==null)
 {
 Debug.LogWarning("There is NO GRAPH to initialise!");
 return;
 }

 //setup two dimensional array of nodeviews
 nodeViews = new NodeView[graph.Width, graph.Height];

 //For each node in the graph
 foreach (Node n in graph.nodes)
 {
 //Creates a nodeview for each node
 GameObject instance = Instantiate(nodeViewPrefab, Vector3.zero,
Quaternion.identity);
 NodeView nodeView = instance.GetComponent<NodeView>();

 //Check if nodeview is not null
 if (nodeView != null)
 {
 //initialise each nodeview
 nodeView.Init(n);
 //Store each nodeview in the array
 nodeViews[n.xIndex, n.yIndex] = nodeView;

 //Check if the node is blocked
 if (n.nodeType == NodeType.Blocked)
 {
 //Color the node black
 nodeView.ColorNode(wallColor);
 //Increases the walls' y-scale so it visually appears as a wall
surrounding the nodes
 nodeView.transform.localScale += new Vector3(0, 1, 0);
 //Moves the walls to the correct y-position after scaling

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 48 of 114

 nodeView.transform.Translate(0, 0.5f, 0);
 }

 //Check if node is light terrain (horizontal distance = 2 metres)
 else if (n.nodeType == NodeType.LightTerrain)
 {
 //Colour the node very light brown
 nodeView.ColorNode(lightTerrainColor);
 }
 //Check if node is medium terrain (horizontal distance = 3 metres)
 else if (n.nodeType == NodeType.MediumTerrain)
 {
 //Colour the node light brown
 nodeView.ColorNode(mediumTerrainColor);
 }
 //Check if node is heavy terrain (horizontal distance = 4 metres)
 else if (n.nodeType == NodeType.HeavyTerrain)
 {
 //Colour the node brown
 nodeView.ColorNode(heavyTerrainColor);
 }
 //Check if node is very heavy terrain (horizontal distance = 5 metres)
 else if (n.nodeType == NodeType.veryHeavyTerrain)
 {
 //Colour the node dark brown
 nodeView.ColorNode(veryHeavyTerrainColor);
 }
 //Check if node is open (horizontal distance = 1 metre)
 else
 {
 //Colour the node white
 nodeView.ColorNode(openColor);
 }
 }
 }
 }

 //Colour a list of nodeviews, blending the new colour with the original colour
 public void ColorNodes(List<Node> nodes, Color color, bool lerpColor = false,
float lerpValue = 0.5f)
 {
 //For each node
 foreach (Node n in nodes)
 {
 //Check is node is not null
 if(n != null)
 {
 //Find the corresponing nodeview
 NodeView nodeView = nodeViews[n.xIndex, n.yIndex];

 //Store the default colour
 Color newColor = color;

 //If colours are being blended
 if (lerpColor)
 {
 //Find the original colour
 Color originalColor = GetColorFromNodeType(n.nodeType);

 //Calculate the blended colour
 newColor = Color.Lerp(originalColor, newColor, lerpValue);
 }

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 49 of 114

 //Check if nodeview is not null
 if (nodeView != null)
 {
 //Colour the nodeview in the new blended colour
 nodeView.ColorNode(newColor);
 }
 }
 }
 }

 //Show the path arrows for a node
 public void ShowNodeArrows(Node node, Color color)
 {
 //Check if node is not null
 if(node != null)
 {
 //Store coordinates of a node
 NodeView nodeView = nodeViews[node.xIndex, node.yIndex];
 //Check if the nodeview is not null
 if(nodeView != null)
 {
 //Colour the path arrows
 nodeView.ShowArrow(color);
 }
 }
 }

 //Show the path arrows for a list of nodes
 public void ShowNodeArrows(List<Node> nodes, Color color)
 {
 //For each node in the graph
 foreach(Node n in nodes)
 {
 //Colour the path arrows
 ShowNodeArrows(n, color);
 }
 }

 //A dictionary holding all the node types and the corresponding colour and
distance
 void SetupLookupTable()
 {
 terrainLookupTable.Add(openColor, NodeType.Open);
 terrainLookupTable.Add(wallColor, NodeType.Blocked);
 terrainLookupTable.Add(lightTerrainColor, NodeType.LightTerrain);
 terrainLookupTable.Add(mediumTerrainColor, NodeType.MediumTerrain);
 terrainLookupTable.Add(heavyTerrainColor, NodeType.HeavyTerrain);
 terrainLookupTable.Add(veryHeavyTerrainColor, NodeType.veryHeavyTerrain);
 }

 //Searches the table for the colour of a node
 public Color GetColorFromNodeType(NodeType nodeType)
 {
 //Check if node type is in the dictionary
 if (terrainLookupTable.ContainsValue(nodeType))
 {
 //Stores the colour of the current node type
 Color colorKey = terrainLookupTable.FirstOrDefault(x => x.Value ==
nodeType).Key;
 //Returns this colour
 return colorKey;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 50 of 114

 }
 //Default colour is white
 return Color.white;
 }
}

Grid Set Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

//The GridSet class is for the custom maze menu where the user can create their own
graph
public class GridSet : MonoBehaviour
{
 //Setting the grid size and position
 [SerializeField]
 private Vector2 gridSize;
 [SerializeField]
 private Vector2 gridOffset;

 //Setting the cells in the grid size and spacing
 [SerializeField]
 private Sprite cellSprite;
 private Vector2 cellSize;
 private Vector2 cellScale;

 //Assigning toggles and variables to each node type the user can select
 public Toggle iBlockedNode;
 public bool blockedNode;
 public Toggle iOpenNode;
 public bool openNode;
 public Toggle iLightTerrainNode;
 public bool lightTerrainNode;
 public Toggle iMediumTerrainNode;
 public bool mediumTerrainNode;
 public Toggle iHeavyTerrainNode;
 public bool heavyTerrainNode;
 public Toggle iVeryHeavyTerrainNode;
 public bool veryHeavyTerrainNode;

 //Called when an open node is clicked
 public void OpenClicked()
 {
 //Sets all other node types to false
 blockedNode = false;
 lightTerrainNode = false;
 mediumTerrainNode = false;
 heavyTerrainNode = false;
 //Sets open node type to true
 openNode = true;
 }
 //Called when a blocked node is clicked
 public void BlockedClicked()
 {
 //Sets all other node types to false
 openNode = false;
 lightTerrainNode = false;
 mediumTerrainNode = false;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 51 of 114

 heavyTerrainNode = false;
 veryHeavyTerrainNode = false;
 //Sets blocked node type to true
 blockedNode = true;
 }
 //Called when a light terrain node is clicked
 public void LightTerrainClicked()
 {
 //Sets all other node types to false
 openNode = false;
 blockedNode = false;
 mediumTerrainNode = false;
 heavyTerrainNode = false;
 veryHeavyTerrainNode = false;
 //Sets light terrain node type to true
 lightTerrainNode = true;
 }
 //Called when a medium terrain node is clicked
 public void MediumTerrainClicked()
 {
 //Sets all other node types to false
 openNode = false;
 blockedNode = false;
 lightTerrainNode = false;
 heavyTerrainNode = false;
 veryHeavyTerrainNode = false;
 //Sets medium terrain node type to true
 mediumTerrainNode = true;
 }
 //Called when an heavy terrain node is clicked
 public void HeavyTerrainClicked()
 {
 //Sets all other node types to false
 openNode = false;
 blockedNode = false;
 lightTerrainNode = false;
 mediumTerrainNode = false;
 veryHeavyTerrainNode = false;
 //Sets heavy terrain node type to true
 heavyTerrainNode = true;
 }
 //Called when a very heavy terrain node is clicked
 public void VeryHeavyTerrainClicked()
 {
 //Sets all other node types to false
 openNode = false;
 blockedNode = false;
 lightTerrainNode = false;
 mediumTerrainNode = false;
 heavyTerrainNode = false;
 //Sets very heavy terrain node type to true
 veryHeavyTerrainNode = true;
 }

 //Called when custom maze menu is opened
 public void CustomMazeLayout()
 {
 //Stores the dimensions of the graph of nodes
 int width =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().width;
 int height =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().height;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 52 of 114

 //Creates a new gameobject for the nodes to be placed alongside
 GameObject cellObject = new GameObject();

 //Adds a sprite renderer component to the gameobject
 cellObject.AddComponent<SpriteRenderer>().sprite = cellSprite;
 //Adds a collider so the gameobject has set boundaries
 cellObject.AddComponent<BoxCollider>();
 //Adds a detector for when the node is clicked on
 cellObject.AddComponent<OnNodeClick>();

 //Catch the size of the cellsprite
 cellSize = cellSprite.bounds.size;

 //Get the new cell size and adjust the size of the cells to fit the size of
the grid
 Vector2 newCellSize = new Vector2(gridSize.x / (float)width, gridSize.y /
(float)height);

 //Get the scales to scale the cells and change their size to fit the grid
 cellScale.x = newCellSize.x / cellSize.x;
 cellScale.y = newCellSize.y / cellSize.y;

 //The original size cell object will be replaced by the new calculated size
 cellSize = newCellSize;
 cellObject.transform.localScale = new Vector2(cellScale.x, cellScale.y);

 //Fix the cells to the grid by getting the dimensions of the grid so the cell
objects can fit
 gridOffset.x = -(gridSize.x / 2) + cellSize.x / 2;
 gridOffset.y = -(gridSize.y / 2) + cellSize.y / 2;

 //Fill the grid with cells by using instantiate gameobject for each node
 for (int row = 0; row < height; row++)
 {
 for (int col = 0; col < width; col++)
 {
 //Add the cell size so that no two cells will have the same x and y
position
 Vector2 pos = new Vector2(col * cellSize.x + gridOffset.x +
transform.position.x, row * cellSize.y + gridOffset.y + transform.position.y);

 //Instantiate the game object, at position pos, with rotation set to
zero
 GameObject cO = Instantiate(cellObject, pos, Quaternion.identity) as
GameObject;

 //Uniquely name each cell object relevant to its row and column
 cO.name = "Node("+row+","+col+")";

 //Set the parents of the cell object to the grid the user can move the
cells together with the grid
 cO.transform.parent = transform;

 //Check for the start node coordinates
 if (col ==
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().startX &&
 row ==
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().startY)
 {
 //Change the start node coordinate to green
 Renderer rend = cO.GetComponent<SpriteRenderer>();

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 53 of 114

 rend.material.color = Color.green;
 }

 //Check for goal node coordinate
 if (col ==
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().goalX &&
 row ==
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().goalY)
 {
 //Change goal node coordinate to red
 Renderer rend = cO.GetComponent<SpriteRenderer>();
 rend.material.color = Color.red;
 }

 }
 }

 //Destroy the original object used to instantiate the cells
 Destroy(cellObject);
 }

}

Map Data Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.Linq;
using System;
using UnityEngine.SceneManagement;
using System.IO;
using UnityEditor;

public class MapData : MonoBehaviour
{
 //Declaring all variable values
 public int width;
 public int height;
 public int presetNum;

 //Assigning a game object to variable
 public GameObject canvas;

 //Declaring the dimensions of a two dimensional array
 public int[,] MakeMap()
 {
 //Getting the width and height of the graph
 int width =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().width;
 int height =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().height;
 //Storing it as the dimensions of the (x,y) of the array
 int[,] map = new int[width, height];

 //For each node in the graph
 for (int i = 0; i < height; i++)
 {
 for (int j = 0; j < width; j++)
 {
 //Make each node appear open/white

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 54 of 114

 map[j, i] = 0;
 }
 }
 //Check if preset maze one is chosen
 if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iPresetMaze1.isOn
== true)
 {
 //Drawing the maze using preset node type values
 map[4, 0] = 10;
 map[6, 0] = 10;
 map[0, 1] = 10;
 map[2, 1] = 10;
 map[3, 1] = 10;
 map[4, 1] = 10;
 map[6, 1] = 10;
 map[8, 1] = 10;
 map[9, 1] = 10;
 map[10, 1] = 10;
 map[11, 1] = 10;
 map[12, 1] = 10;
 map[13, 1] = 10;
 map[13, 2] = 10;
 map[8, 2] = 10;
 map[11, 3] = 10;
 map[10, 3] = 10;
 map[9, 3] = 10;
 map[8, 3] = 10;
 map[7, 3] = 10;
 map[5, 3] = 10;
 map[4, 3] = 10;
 map[3, 3] = 10;
 map[2, 3] = 10;
 map[0, 3] = 10;
 map[0, 4] = 10;
 map[2, 4] = 10;
 map[4, 4] = 10;
 map[8, 4] = 10;
 map[13, 4] = 10;
 map[0, 5] = 10;
 map[2, 5] = 10;
 map[6, 5] = 10;
 map[8, 5] = 10;
 map[10, 5] = 10;
 map[11, 5] = 10;
 map[13, 5] = 10;
 map[13, 6] = 10;
 map[12, 6] = 10;
 map[11, 6] = 10;
 map[10, 6] = 10;
 map[9, 6] = 10;
 map[8, 6] = 10;
 map[7, 6] = 10;
 map[6, 6] = 10;
 map[4, 6] = 10;
 map[2, 6] = 10;
 map[0, 6] = 10;
 map[2, 7] = 10;
 map[4, 7] = 10;
 map[6, 7] = 10;
 map[13, 7] = 10;
 map[0, 8] = 10;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 55 of 114

 map[1, 8] = 10;
 map[2, 8] = 10;
 map[3, 8] = 10;
 map[4, 8] = 10;
 map[6, 8] = 10;
 map[8, 8] = 10;
 map[9, 8] = 10;
 map[11, 8] = 10;
 map[12, 8] = 10;
 map[13, 8] = 10;
 map[14, 8] = 10;
 map[13, 9] = 10;
 map[8, 9] = 10;
 map[6, 9] = 10;
 map[4, 9] = 10;
 map[0, 10] = 10;
 map[1, 10] = 10;
 map[2, 10] = 10;
 map[6, 10] = 10;
 map[8, 10] = 10;
 map[9, 10] = 10;
 map[10, 10] = 10;
 map[11, 10] = 10;
 map[13, 10] = 10;
 map[13, 11] = 10;
 map[11, 11] = 10;
 map[4, 11] = 10;
 map[3, 11] = 10;
 map[2, 11] = 10;
 map[0, 12] = 10;
 map[6, 12] = 10;
 map[8, 12] = 10;
 map[9, 12] = 10;
 map[10, 12] = 10;
 map[11, 12] = 10;
 map[13, 13] = 10;
 map[8, 13] = 10;
 map[6, 13] = 10;
 map[5, 13] = 10;
 map[4, 13] = 10;
 map[3, 13] = 10;
 map[1, 13] = 10;
 map[0, 13] = 10;
 map[5, 14] = 10;
 map[8, 14] = 10;
 map[9, 14] = 10;
 map[10, 14] = 10;
 map[11, 14] = 10;
 map[12, 14] = 10;
 map[13, 14] = 10;
 }
 //Check if preset maze two is chosen
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iPresetMaze2.isOn
== true)
 {
 //Drawing the maze using preset node type values
 map[12, 0] = 10;
 map[12, 1] = 10;
 map[12, 2] = 10;
 map[12, 3] = 10;
 map[12, 4] = 10;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 56 of 114

 map[12, 5] = 10;
 map[12, 6] = 10;
 map[12, 7] = 10;
 map[12, 8] = 10;
 map[12, 9] = 10;
 map[12,10] = 10;
 map[12,11] = 10;
 map[12,13] = 10;
 map[12, 12] = 10;
 map[12, 14] = 10;
 map[12, 15] = 10;
 map[12, 16] = 10;
 map[12, 17] = 10;
 map[12, 18] = 10;
 map[12, 19] = 10;
 map[12, 20] = 10;
 map[12, 21] = 10;
 map[12, 23] = 10;
 map[12, 24] = 10;

 map[24, 1] = 10;

 map[23, 1] = 10;
 map[22, 1] = 10;
 map[21, 1] = 10;
 map[20, 1] = 10;
 map[19, 1] = 10;
 map[18, 1] = 10;
 map[17, 1] = 10;
 map[16, 1] = 10;
 map[15, 1] = 10;
 map[14, 1] = 10;
 }
 //Check if preset maze three is chosen
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iPresetMaze3.isOn
== true)
 {
 //Drawing the maze using preset node type values (Draws vertical walls
every second x-value in graph)
 int incr = 1;
 for (int k = 0; k < 100; k+=2)
 {
 for (int l = 0; l < 100; l++)
 {
 map[k, l] = 10;
 }
 incr += 1;
 if (incr % 2 == 0)
 {
 map[k, 0] = 0;
 }
 else
 {
 map[k, 99] = 0;
 }
 }
 for (int m = 0; m < 100; m++)
 {
 map[m, 50] = 0;
 }
 }
 //Check if preset maze four is chosen

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 57 of 114

 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iPresetMaze4.isOn
== true)
 {
 //Drawing the maze using preset node type values with different weights
 for (int n = 0; n < 9; n+=2)
 {
 for (int l = 2; l < 48; l++)
 {
 map[l, n] = 10;
 }
 }
 for (int i = 2; i < 48; i++)
 {
 map[i, 1] = 4;
 }
 for (int i = 2; i < 48; i++)
 {
 map[i, 3] = 3;
 }
 for (int i = 2; i < 48; i++)
 {
 map[i, 5] = 2;
 }
 }

 //Check if random maze one is chosen
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iRandomMaze1.isOn
== true)
 {
 //Generate a random number between 0 and 2
 System.Random rnd = new System.Random();
 for (int i = 0; i < height; i++)
 {
 for (int j = 0; j < width; j++)
 {
 int randomState = rnd.Next(2);
 //Check if the random number is zero (one in three)
 if (randomState == 0)
 {
 //Make particular node a wall
 map[j, i] = 10;
 }
 }
 }
 }
 //Check if random maze two is chosen
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iRandomMaze2.isOn
== true)
 {
 //Generate a random number between 0 and 3
 System.Random rnd = new System.Random();
 for (int i = 0; i < height; i++)
 {
 for (int j = 0; j < width; j++)
 {
 int randomState = rnd.Next(3);
 //Check if the random number is zero (one in four)
 if (randomState == 0)
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 58 of 114

 //Make particular node a wall
 map[j, i] = 10;
 }
 }
 }
 }
 //Check if random maze three is chosen
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iRandomMaze3.isOn
== true)
 {
 //Generate a random number between 0 and 4
 System.Random rnd = new System.Random();
 for (int i = 0; i < height; i++)
 {
 for (int j = 0; j < width; j++)
 {
 int randomState = rnd.Next(4);
 //Check if the random number is zero (one in five)
 if (randomState == 0)
 {
 //Make particular node a wall
 map[j, i] = 10;
 }
 }
 }
 }

 //Check if custom maze is chosen
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iCustomMaze.isOn
== true)
 {
 //Set the custom maze menu as active
 canvas.SetActive(true);

 //For each cell object in the custom maze grid, set the node type in the
graph view as the respective node type
 for (int i = 0; i < height; i++)
 {
 for (int j = 0; j < width; j++)
 {
 //Find the relevant cell object
 Renderer rend = GameObject.Find("Node(" + i + "," + j +
")").GetComponent<SpriteRenderer>();
 //Check if the cell object is a wall and make the node in graph
view a wall
 if (rend.material.color == Color.black)
 {
 map[j, i] = 10;
 }
 //Check if the cell object is open and make the node in graph view
open
 else if (rend.material.color == new Color32(236, 198, 164, 255))
 {
 map[j, i] = 1;
 }
 //Check if the cell object is light terrain and make the node in
graph view light terrain
 else if (rend.material.color == new Color32(188, 142, 100, 255))
 {
 map[j, i] = 2;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 59 of 114

 }
 //Check if the cell object is medium terrain and make the node in
graph view medium terrain
 else if (rend.material.color == new Color32(148, 98, 60, 255))
 {
 map[j, i] = 3;
 }
 //Check if the cell object is heavy terrain and make the node in
graph view heavy terrain
 else if (rend.material.color == new Color32(100, 70, 44, 255))
 {
 map[j, i] = 4;
 }
 //Check if the cell object is very heavy terrain and make the node
in graph view very heavy terrain
 else
 {
 map[j, i] = 0;
 }
 }
 }
 //Set the custom maze menu as inactive
 canvas.SetActive(false);
 }

 //Get the start(x,y) and goal(x,y) values from the user
 int startX =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().startX;
 int startY =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().startY;
 int goalX =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().goalX;
 int goalY =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().goalY;

 //Make sure that the start and goal nodes are not a wall
 map[startX, startY] = 0;
 map[goalX, goalY] = 0;

 //Return the map's values
 return map;
 }
}

Menu Selector Code:
using System.Collections;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;

//This class controls the function of the main menu
public class MenuSelector : MonoBehaviour {

 //Declares variables
 GameObject maze;
 GameObject instructions;
 GameObject descriptionObject;

 //Assigns game objects to each variable
 public GameObject backgroundImage;
 public GameObject mazeCanvas;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 60 of 114

 public GameObject menuCanvas;
 public GameObject instructionCanvas;
 public GameObject instructionCanvas2;
 public GameObject pathfinderCanvas;

 //Set the description text
 Text description;

 //Called when the program is initialised
 void Start () {
 //Assigns game objects to each variable
 maze = GameObject.Find("p_maze");
 instructions = GameObject.Find("p_instructions");;
 descriptionObject = GameObject.Find("Mode Description");

 //Gets the text for the description of menu titles
 description = descriptionObject.GetComponent<Text>();
 //Sets the description
 description.text = "Select one of the boxes above ";
 }

 //Update is called once per frame
 void Update()
 {
 //Rotate background slowly
 backgroundImage.transform.Rotate(0, 0, 0.1f);
 }

 //Called when the mouse hovers over a button
 public void ButtonHover (Button button)
 {
 //Check what button the mouse is above and sets the description accordingly
 if (button.name == "Button maze")
 {
 description.text = "Run through a maze using A* (A Star), Dijkstra's
Algorithm, Breadth First Search, and Greedy Best First Search";
 }
 else if (button.name == "Button instructions")
 {
 description.text = "Detailed explaination and instructions on each section
of the program.";
 }
 //Update the new description
 else
 {
 description.transform.SetAsLastSibling();
 }
 }

 //Called when the pathfinder option is clicked
 public void MazePathfinder (Button button)
 {
 //Sets the main menu as inactive and the variable settings screen as active
 menuCanvas.SetActive(false);
 mazeCanvas.SetActive(true);
 }

 //Called when the instructions option is clicked
 public void Instruction(Button button)
 {
 //Sets the main menu as inactive and instruction page as active
 menuCanvas.SetActive(false);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 61 of 114

 instructionCanvas.SetActive(true);
 }

 public void InstructionPageBack(Button button)
 {
 //Sets the pathfinder screen as active and instructions page as inactive
 instructionCanvas2.SetActive(false);
 pathfinderCanvas.SetActive(true);
 }

 public void InstructionPage2(Button button)
 {
 //Sets the pathfinder screen as inactive and instructions page 2 as active
 pathfinderCanvas.SetActive(false);
 instructionCanvas2.SetActive(true);
 }

 //Called when the program is being closed
 public void Quit()
 {
 //Quits the program
 Application.Quit();
 }
}

Move Background Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MoveBackground : MonoBehaviour
{
 public float maxSize;
 public float growFactor;
 public float waitTime;

 void Start()
 {
 StartCoroutine(Scale());
 }

 IEnumerator Scale()
 {
 float timer = 0;

 while (true) // this could also be a condition indicating "alive or dead"
 {
 // we scale all axis, so they will have the same value,
 // so we can work with a float instead of comparing vectors
 while (maxSize > transform.localScale.x)
 {
 timer += Time.deltaTime;
 transform.localScale += new Vector3(1, 1, 1) * Time.deltaTime *
growFactor;
 yield return null;
 }
 // reset the timer

 yield return new WaitForSeconds(waitTime);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 62 of 114

 timer = 0;
 while (1 < transform.localScale.x)
 {
 timer += Time.deltaTime;
 transform.localScale -= new Vector3(1, 1, 1) * Time.deltaTime *
growFactor;
 yield return null;
 }

 timer = 0;
 yield return new WaitForSeconds(waitTime);
 }
 }
}

Node Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;

//Enum used to declare a list of node types with integer constants
public enum NodeType
{
 Open = 0,//Distance 1 metres
 Blocked = 10, //Not traversable
 //
 LightTerrain = 1, //Distance: 2 metres
 MediumTerrain = 2, //Distance: 3 metres
 HeavyTerrain = 3, //Distance: 4 metres
 veryHeavyTerrain = 4 //Distance: 5 metres
 //
}

//Node class implements the interface IComparable
public class Node: IComparable<Node>
{
 //Set the terrain type of the node
 public NodeType nodeType = NodeType.Open;

 //x and y index in the graph array
 public int xIndex = -1;
 public int yIndex = -1;

 //Vector 3 (x,y,z) position
 public Vector3 position;
 //List of neighbour nodes
 public List<Node> neighbours = new List<Node>();

 //Total distance travelled from the start node
 public float distanceTravelled = Mathf.Infinity;
 //Reference to the previous node as null in the graph
 public Node previous = null;
 //Priority to set placement of node in queue
 public float priority;

 //Initialise the variables when the node object is created
 public Node(int xIndex, int yIndex, NodeType nodeType)
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 63 of 114

 this.xIndex = xIndex;
 this.yIndex = yIndex;
 this.nodeType = nodeType;
 }

 //Required for the IComparable comparison method to compare this node with another
node based on priority
 public int CompareTo(Node other)
 {
 //Check if priority is less, more, or equal to the other node and return a
value accordingly
 if (this.priority < other.priority)
 {
 return -1;
 }
 else if (this.priority > other.priority)
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }

 //Set the preceding node to null
 public void Reset()
 {
 previous = null;
 }
}

Node View Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

//Class for managing the appearance of a node
public class NodeView : MonoBehaviour
{
 //Assigning game objects to variables
 public GameObject tile;
 public GameObject arrow;

 //Corresponding node
 Node m_node;

 //Declaring the default size between nodes
 public float borderSize = 0.1f;

 //Initialise the NodeView with the corresponding node
 public void Init(Node node)
 {
 //Sets the border size to what the user has set
 borderSize =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().borderSize;
 //Check is node tile exists
 if (tile != null)
 {
 //Name the tile according to its (x,y) position

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 64 of 114

 gameObject.name = "Node (" + node.xIndex + "," + node.yIndex + ")";
 gameObject.transform.position = node.position;
 //Change the scale based on border size
 tile.transform.localScale = new Vector3(1f - borderSize, 1f, 1f -
borderSize);
 m_node = node;
 //Disable arrows
 EnableObject(arrow, false);
 }
 }

 //Method to colour the tile gameobject
 void ColorNode(Color color, GameObject go)
 {
 //Check if the game object exists
 if (go != null)
 {
 //Get the renderer of the game object
 Renderer goRenderer = go.GetComponent<Renderer>();
 //Check if renderer exists
 if (goRenderer != null)
 {
 //Set the colour of the game object to the specified colour
 goRenderer.material.color = color;
 }
 }
 }

 //Method to colour the tile gameobject
 public void ColorNode(Color color)
 {
 ColorNode(color, tile);
 }

 //Generic method to toggle a game object on and off
 void EnableObject(GameObject go, bool state)
 {
 if(go != null)
 {
 go.SetActive(state);
 }
 }

 //Show the arrow with a relevant color
 public void ShowArrow(Color color)
 {
 // verify there is a corresponding node, arrow model, and a target for the
arrow
 if (m_node != null && arrow != null && m_node.previous != null)
 {
 //Turn the arrow geometry on
 EnableObject(arrow, true);

 //Calculate the arrows direction to point to its next node
 Vector3 dirToPrevious = (m_node.previous.position -
m_node.position).normalized;

 //Rotate the arrow towards the next node
 arrow.transform.rotation = Quaternion.LookRotation(dirToPrevious);

 //Change the colour of the arrow
 Renderer arrowRenderer = arrow.GetComponent<Renderer>();

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 65 of 114

 if (arrowRenderer != null)
 {
 arrowRenderer.material.color = color;
 }
 }
 }
}

On Node Click Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

//Class to colour in the nodes in the custom maze
public class OnNodeClick : MonoBehaviour
{
 //Declare all variables
 public bool openNode;
 public bool blockedNode;
 public bool lightNode;
 public bool mediumNode;
 public bool heavyNode;
 public bool veryHeavyNode;
 public bool is_down;

 //Called once per frame
 private void Update()
 {
 //Check if left mouse button is down
 if (Input.GetMouseButton(0))
 {
 //Set mouse down as true
 is_down = true;
 }
 else
 {
 //Set mouse down to false
 is_down = false;
 }
 }

 //Called when the mouse is over a gameobject
 public void OnMouseOver()
 {
 //Check if mouse is held down
 if (is_down == true)
 {
 //Find which node type is set to true
 openNode = GameObject.Find("GridHolder").GetComponent<GridSet>().openNode;
 blockedNode =
GameObject.Find("GridHolder").GetComponent<GridSet>().blockedNode;
 lightNode =
GameObject.Find("GridHolder").GetComponent<GridSet>().lightTerrainNode;
 mediumNode =
GameObject.Find("GridHolder").GetComponent<GridSet>().mediumTerrainNode;
 heavyNode =
GameObject.Find("GridHolder").GetComponent<GridSet>().heavyTerrainNode;
 veryHeavyNode =
GameObject.Find("GridHolder").GetComponent<GridSet>().veryHeavyTerrainNode;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 66 of 114

 //Get the component to colour the game object
 Renderer rend = gameObject.GetComponent<SpriteRenderer>();

 //Check if the node type open node is true and colour cell object white
 if (openNode == true && rend.material.color != Color.green &&
rend.material.color != Color.red)
 {
 rend.material.color = Color.white;
 }
 //Check if the node type blocked node is true and colour cell object black
 else if (blockedNode == true && rend.material.color != Color.green &&
rend.material.color != Color.red)
 {
 rend.material.color = Color.black;
 }
 //Check if the node type light terrain node is true and colour cell object
very light brown
 else if (lightNode == true && rend.material.color != Color.green &&
rend.material.color != Color.red)
 {
 rend.material.color = new Color32(236, 198, 164, 255);
 }
 //Check if the node type medium terrain node is true and colour cell
object light brown
 else if (mediumNode == true && rend.material.color != Color.green &&
rend.material.color != Color.red)
 {
 rend.material.color = new Color32(188, 142, 100, 255);
 }
 //Check if the node type heavy terrain node is true and colour cell object
brown
 else if (heavyNode == true && rend.material.color != Color.green &&
rend.material.color != Color.red)
 {
 rend.material.color = new Color32(148, 98, 60, 255);
 }
 //Check if the node type very heavy terrain node is true and colour cell
object dark brown
 else if (veryHeavyNode == true && rend.material.color != Color.green &&
rend.material.color != Color.red)
 {
 rend.material.color = new Color32(100, 70, 44, 255);
 }
 }
 }
}

Pathfinder Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using System.IO;
using System.Linq;
using System.Timers;

//This class controls the pathfinding of the program
public class Pathfinder : MonoBehaviour
{

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 67 of 114

 //The starting node
 Node m_startNode;

 //The goal node
 Node m_goalNode;

 //Graph and graphview components
 Graph m_graph;
 GraphView m_graphView;

 //The 'open' set of nodes that are to be explored
 PriorityQueue<Node> m_frontierNodes;

 //The 'closed' set of Nodes that have already been explored
 List<Node> m_exploredNodes;

 //The list of nodes that make up the path from the start to goal node
 List<Node> m_pathNodes;

 //Setting the colour of each type of node so the user can identify them
 public Color startColor = Color.green;
 public Color goalColor = Color.red;
 public Color frontierColor;
 public Color exploredColor = Color.grey;
 public Color pathColor;
 public Color arrowColor = new Color(0.85f, 0.85f, 0.85f, 1f); //Light grey Color
 public Color highlightColor;

 //Declaring all user settings as their default values
 //Show the pathfinder as it goes through the maze
 public bool showIterations = true;
 //Show the colours of the nodes
 public bool showColors = true;
 //Show the arrows showing the path and explored nodes
 public bool showArrows = true;
 //Should the pathfinder exit when the goal is found
 public bool exitOnGoal = true;
 //Setting the goal as not found by default
 public bool isComplete = false;

 //Number of iterations used
 int m_iterations = 0;

 //Assigning gameobjects to each variable
 public GameObject ChooseAnother;
 public GameObject ToggleInformation;

 //Text to display information about the pathfinders
 public Text Information;
 public Text Parameters;
 public Text textDijkstra;
 public Text textAStar;
 public Text textBreadth;
 public Text textGreedy;

 //Setting the default time of all the algorithms
 public float DijkstraTime = 999999;
 public float AStarTime = 999999;
 public float BreadthTime = 999999;
 public float GreedyTime = 999999;

 //Setting the default distance of all the algorithms

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 68 of 114

 public float DijkstraDistance = 999999;
 public float AStarDistance = 999999;
 public float BreadthDistance = 999999;
 public float GreedyDistance = 999999;

 //Setting the default speed of all algorithms
 public float DijkstraSpeed;
 public float AStarSpeed;
 public float BreadthSpeed;
 public float GreedySpeed;

 //Booleans to check if specific algorithm has been run
 public bool completeDijkstra = false;
 public bool completeAStar = false;
 public bool completeBreadth = false;
 public bool completeGreedy = false;

 //Set-up the stopwatch
 public System.Diagnostics.Stopwatch stopwatch;

 //All the pathfinding algorithms
 public enum Mode
 {
 BreadthFirst = 0,
 Dijkstra = 1,
 GreedyBestFirst = 2,
 AStar = 3
 }

 //Default the pathfinder as Breadth First Search
 public Mode mode = Mode.BreadthFirst;

 //Called when the pathfinder is initialised
 public void Init(Graph graph, GraphView graphView, Node start, Node goal)
 {
 //Error check for if the start,goal, graph or graphview is missing
 if (start == null || goal == null || graph == null || graphView == null)
 {
 Debug.LogWarning("PATHFINDER Init error: missing component(s)");
 return;
 }
 //Ensure that the start and goal nodes are not a wall node type
 if (start.nodeType == NodeType.Blocked || goal.nodeType == NodeType.Blocked)
 {
 Debug.LogWarning("PATHFINDER Init error: start and goal nodes must be
unblocked");
 return;
 }

 //Store the graph, graphview, starting and goal node
 m_graph = graph;
 m_graphView = graphView;
 m_startNode = start;
 m_goalNode = goal;

 //Draw the colours of the map
 ShowColors(graphView, start, goal);

 //Begin the frontier node list with only the start node
 m_frontierNodes = new PriorityQueue<Node>();
 m_frontierNodes.Enqueue(start);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 69 of 114

 //Initialise the explored and path node as empty lists
 m_exploredNodes = new List<Node>();
 m_pathNodes = new List<Node>();

 //Reset all nodes in the graph
 for (int x = 0; x < m_graph.Width; x++)
 {
 for (int y = 0; y < m_graph.Height; y++)
 {
 m_graph.nodes[x, y].Reset();
 }
 }

 //Setup the starting values
 isComplete = false;
 m_iterations = 0;
 m_startNode.distanceTravelled = 0;
 }

 //Show colours in the graph view
 void ShowColors(bool lerpColor = false, float lerpValue = 0.5f)
 {
 ShowColors(m_graphView, m_startNode, m_goalNode, lerpColor, lerpValue);
 }
 void ShowColors(GraphView graphView, Node start, Node goal, bool lerpColor =
false, float lerpValue = 0.5f)
 {
 //Error check if graph view, start or goal node does not exist
 if(graphView == null || start == null || goal == null)
 {
 return;
 }
 //Colour all the frontier nodes
 if (m_frontierNodes != null)
 {
 graphView.ColorNodes(m_frontierNodes.ToList(), frontierColor, lerpColor,
lerpValue);
 }
 //Colour all the explored nodes
 if (m_exploredNodes != null)
 {
 graphView.ColorNodes(m_exploredNodes, exploredColor, lerpColor,
lerpValue);
 }
 //Colour all the path nodes
 if (m_pathNodes!= null && m_pathNodes.Count > 0)
 {
 graphView.ColorNodes(m_pathNodes, pathColor, lerpColor, lerpValue * 2);
 }

 //Colour the start nodeview directly
 NodeView startNodeView = graphView.nodeViews[start.xIndex, start.yIndex];
 if (startNodeView != null)
 {
 startNodeView.ColorNode(startColor);
 }

 //Colour the start nodeview directly
 NodeView goalNodeView = graphView.nodeViews[goal.xIndex, goal.yIndex];
 if (goalNodeView != null)
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 70 of 114

 goalNodeView.ColorNode(goalColor);
 }
 }

 //The main pathfinding algorithm search methods
 public IEnumerator SearchRoutine(float timeStep = 0.01f)
 {
 //Reset the stopwtach
 stopwatch = new System.Diagnostics.Stopwatch();

 //Check if Dijkstra search is selected and set the pathfinding mode
 if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iDijkstra.isOn ==
true)
 {
 mode = Mode.Dijkstra;
 }
 //Check if Dijkstra search is selected and set the pathfinding mode
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iAStar.isOn ==
true)
 {
 mode = Mode.AStar;
 }
 //Check if Dijkstra search is selected and set the pathfinding mode
 else if
(GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().iBreadthFirstSear
ch.isOn == true)
 {
 mode = Mode.BreadthFirst;
 }
 //Check if Dijkstra search is selected and set the pathfinding mode
 else
 {
 mode = Mode.GreedyBestFirst;
 }
 //Reset the stopwatch time
 stopwatch.Reset();
 //Start the stopwatch timer
 stopwatch.Start();

 //Wait until the next frame
 yield return null;

 //While the pathfinder has not found the goal
 while (!isComplete)
 {
 //Check if there are still open nodes to explore
 if (m_frontierNodes.Count > 0)
 {
 //Get the next available open node from the priority queue
 Node currentNode = m_frontierNodes.Dequeue();
 //Increment the iteration counter
 m_iterations++;

 //Mark the current node as explored
 if(!m_exploredNodes.Contains(currentNode))
 {
 m_exploredNodes.Add(currentNode);
 }

 //Check if the pathfinder mode selected is breadth first search

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 71 of 114

 if(mode == Mode.BreadthFirst)
 {
 //Search using breadth first search
 ExpandFrontierBreadthFirstSearch(currentNode);
 }
 //Check if the pathfinder mode selected is dijkstra's algorithm
 else if (mode == Mode.Dijkstra)
 {
 //Search using dijkstra's algortihm
 ExpandFrontierDijkstra(currentNode);
 }
 //Check if the pathfinder mode selected is greedy best first search
 else if (mode == Mode.GreedyBestFirst)
 {
 //Search using greedy best first search
 ExpandFrontierGreedyBestFirst(currentNode);
 }
 //Check if the pathfinder mode selected is A Star search
 else
 {
 //Search using A Star search
 ExpandFrontierAStar(currentNode);
 }

 //Check if the list of frontier nodes includes the goal node
 if (m_frontierNodes.Contains(m_goalNode))
 {
 //Set the path nodes
 m_pathNodes = GetPathNodes(m_goalNode);
 //Set the exitOnGoal variable to what the user has chosen on the
settings page
 exitOnGoal =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().ExitOnGoal;
 //Check if exitOnGoal is turned on
 if (exitOnGoal)
 {
 //Mark the search as complete
 isComplete = true;
 }
 if (!exitOnGoal)
 {
 //Pause the timer when the goal is found if exitOnGoal is set
to false
 stopwatch.Stop();
 }
 }
 //Check if show iterations setting is true
 showIterations =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().showIterations;
 if (showIterations)
 {
 //Colour each node individually
 ShowDiagnostics(true, 0.5f);
 //Get the users inputted value for time step variable
 timeStep =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().timeStep;
 //Wait a specified amount of time before exploring another node
 yield return new WaitForSeconds(timeStep);
 }
 }
 else
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 72 of 114

 //Mark the search as complete if there are no more frontier nodes
 isComplete = true;
 }
 }
 //Colour all nodes
 ShowDiagnostics(true,0.5f);
 //Stop the stopwatch timer
 stopwatch.Stop();

 //Check if the pathfinder has run with a valid mode
 if (!Information.text.Contains(mode.ToString()))
 {
 //Output the pathfinder mode
 Information.text += "\n\n\n<size=42>Pathfinder Mode:\n<i>" +
mode.ToString() + "</i></size>";
 //Check for if no path was possible
 if(m_goalNode.distanceTravelled.ToString() == "Infinity")
 {
 //Fill in the text box with time, and nodes visited
 Information.text += "\n\n<i>There is no possible\npath</i>";
 Information.text += "\n\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 Information.text += "\n\nNodes explored:\n<i>" + (m_iterations)+"
nodes</i>";
 }
 //Check if a path was found
 else
 {
 //Fill in the text box with time, distance, speed, and nodes visited
 Information.text += "\n\nPath Length:\n<i>" +
m_goalNode.distanceTravelled.ToString() + " metres</i>";
 Information.text += "\n\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 Information.text += "\n\nAverage Speed:\n<i>" +
(m_goalNode.distanceTravelled / ((float)stopwatch.ElapsedTicks / 10000000)) + " metres
per\nsecond</i>";
 Information.text += "\n\nNodes explored:\n<i>" + (m_iterations) + "
nodes</i>";
 }
 //Check if dijkstra pathfinder mode was run
 if (mode == Mode.Dijkstra)
 {
 completeDijkstra = true;
 //Output the pathfinder mode in the dijkstra textbox
 textDijkstra.text = "<size=42>Dijkstra's Algorithm:</size>";
 //Check for if no path was possible
 if (m_goalNode.distanceTravelled.ToString() == "Infinity")
 {
 //Fill in the text box with time in the dijkstra textbox
 textDijkstra.text += "\n<i>No Possible Path</i>";
 textDijkstra.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 DijkstraTime = ((float)stopwatch.ElapsedTicks / 10000000);
 }
 else
 {
 //Fill in the text box with time, distance, and speed in the
dijkstra textbox
 textDijkstra.text += "\nPath Length:\n<i>" +
m_goalNode.distanceTravelled.ToString() + " metres</i>";
 textDijkstra.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 73 of 114

 textDijkstra.text += "\nAverage Speed:\n<i>" +
(m_goalNode.distanceTravelled / ((float)stopwatch.ElapsedTicks / 10000000)) + "
m/s</i>";
 DijkstraDistance =
float.Parse(m_goalNode.distanceTravelled.ToString());
 DijkstraTime = ((float)stopwatch.ElapsedTicks / 10000000);
 DijkstraSpeed = (m_goalNode.distanceTravelled /
((float)stopwatch.ElapsedTicks / 10000000));
 }
 }
 else if (mode == Mode.AStar)
 {
 completeAStar = true;
 //Output the pathfinder mode in the A Star textbox
 textAStar.text = "<size=42>A* (A Star):</size>";
 //Check for if no path was possible
 if (m_goalNode.distanceTravelled.ToString() == "Infinity")
 {
 //Fill in the text box with time in the A Star textbox
 textAStar.text += "\n<i>No Possible Path</i>";
 textAStar.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 AStarTime = ((float)stopwatch.ElapsedTicks / 10000000);
 }
 else
 {
 //Fill in the text box with time, distance, and speed in the A
Star textbox
 textAStar.text += "\nPath Length:\n<i>" +
m_goalNode.distanceTravelled.ToString() + " metres</i>";
 textAStar.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 textAStar.text += "\nAverage Speed:\n<i>" +
(m_goalNode.distanceTravelled / ((float)stopwatch.ElapsedTicks / 10000000)) + "
m/s</i>";
 AStarDistance =
float.Parse(m_goalNode.distanceTravelled.ToString());
 AStarTime = ((float)stopwatch.ElapsedTicks / 10000000);
 AStarSpeed = (m_goalNode.distanceTravelled /
((float)stopwatch.ElapsedTicks / 10000000));
 }
 }

else if (mode == Mode.BreadthFirst)
 {
 completeBreadth = true;
 //Output the pathfinder mode in the breadth first textbox
 textBreadth.text = "<size=42>Breadth First Search:</size>";
 //Check for if no path was possible
 if (m_goalNode.distanceTravelled.ToString() == "Infinity")
 {
 //Fill in the text box with time in the breadth first search
textbox
 textBreadth.text += "\n<i>No Possible Path</i>";
 textBreadth.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 BreadthTime = ((float)stopwatch.ElapsedTicks / 10000000);
 }
 else
 {
 //Fill in the text box with time, distance, and speed in the
breadth first search textbox

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 74 of 114

 textBreadth.text += "\nPath Length:\n<i>" +
m_goalNode.distanceTravelled.ToString() + " metres</i>";
 textBreadth.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 textBreadth.text += "\nAverage Speed:\n<i>" +
(m_goalNode.distanceTravelled / ((float)stopwatch.ElapsedTicks / 10000000)) + "
m/s</i>";
 BreadthDistance =
float.Parse(m_goalNode.distanceTravelled.ToString());
 BreadthTime = ((float)stopwatch.ElapsedTicks / 10000000);
 BreadthSpeed = (m_goalNode.distanceTravelled /
((float)stopwatch.ElapsedTicks / 10000000));
 }
 }
 else if (mode == Mode.GreedyBestFirst)
 {
 completeGreedy = true;
 //Output the pathfinder mode in the greedy best first textbox
 textGreedy.text = "<size=42>Greedy Best First:</size>";
 //Check for if no path was possible
 if (m_goalNode.distanceTravelled.ToString() == "Infinity")
 {
 //Fill in the text box with time in the greedy best first textbox
 textGreedy.text += "\n<i>No Possible Path</i>";
 textGreedy.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 GreedyTime = ((float)stopwatch.ElapsedTicks / 10000000);
 }
 else
 {
 //Fill in the text box with time, distance, and speed in the
greedy best first textbox
 textGreedy.text += "\nPath Length:\n<i>" +
m_goalNode.distanceTravelled.ToString() + " metres</i>";
 textGreedy.text += "\nTime taken:\n<i>" +
((float)stopwatch.ElapsedTicks / 10000000) + " seconds</i>";
 textGreedy.text += "\nAverage Speed:\n<i>" +
(m_goalNode.distanceTravelled / ((float)stopwatch.ElapsedTicks / 10000000)) + "
m/s</i>";
 GreedyDistance =
float.Parse(m_goalNode.distanceTravelled.ToString());
 GreedyTime = ((float)stopwatch.ElapsedTicks / 10000000);
 GreedySpeed = (m_goalNode.distanceTravelled /
((float)stopwatch.ElapsedTicks / 10000000));
 }
 }
 //Check if all pathfinders have run at least once
 if (completeDijkstra == true && completeAStar == true && completeBreadth
== true && completeGreedy == true)
 {
 //Call function to write information to external text file
 CreateText();
 }

 }
 //Allow the user to choose another pathfinder to run
 ChooseAnother.SetActive(true);
 //Check if more than one pathfinder has been run
 if (GameObject.Find("DemoController").GetComponent<DemoController>().pass ==
1)
 {
 //Keep information up

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 75 of 114

 ToggleInformation.SetActive(true);
 }
 //Check if the first pathfinder is being run
 if (GameObject.Find("DemoController").GetComponent<DemoController>().pass ==
0)
 {
 //Sort result in order of ascending distance by default

GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().SortDistanceUpdate
();
 }
 }

 //Method called to show arrows and colours
 private void ShowDiagnostics(bool lerpColor = false, float lerpValue = 0.5f)
 {
 if (showColors)
 {
 //Show colours on the graph view
 ShowColors(lerpColor,lerpValue);
 }
 //Check if user has set showArrows to true
 showArrows =
GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().showArrows;
 if (m_graphView != null && showArrows)
 {
 //Show arrows from the frontier in the arrow colour
 m_graphView.ShowNodeArrows(m_frontierNodes.ToList(), arrowColor);

 //Check if the goal node has been reached
 if (m_frontierNodes.Contains(m_goalNode))
 {
 //Show the arrows indicating the correct path
 m_graphView.ShowNodeArrows(m_pathNodes, highlightColor);
 }
 }
 }

 //Expand the frontier nodes using dijkstra's algorithm
 void ExpandFrontierDijkstra(Node node)
 {
 if (node != null)
 {
 //Loop through all the neighbour nodes
 for (int i = 0; i < node.neighbours.Count; i++)
 {
 //Check if the current neighbor has not been explored
 if (!m_exploredNodes.Contains(node.neighbours[i]))
 {
 //Get distance values to neighbour and total distance
 float distanceToNeighbour = m_graph.GetNodeDistance(node,
node.neighbours[i]);
 float newDistanceTravelled = distanceToNeighbour +
node.distanceTravelled +(int)node.nodeType;

 //CHeck if a shorter path to the neighbour is available via this
node and re-route
 if (float.IsPositiveInfinity(node.neighbours[i].distanceTravelled)
||
 newDistanceTravelled < node.neighbours[i].distanceTravelled)
 {
 node.neighbours[i].previous = node;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 76 of 114

 node.neighbours[i].distanceTravelled = newDistanceTravelled;
 }
 //Check if the current neighbour is not a part of the frontier
nodes
 if (!m_frontierNodes.Contains(node.neighbours[i]))
 {
 //Set the priority based on distance travelled from start node
and add to frontier
 node.neighbours[i].priority =
node.neighbours[i].distanceTravelled;
 //Distance travelled is what determines priority of the node
 m_frontierNodes.Enqueue(node.neighbours[i]);
 }
 }
 }
 }
 }

 //Expand the frontier nodes using breadth first search
 void ExpandFrontierBreadthFirstSearch(Node node)
 {
 if (node != null)
 {
 //Loop through all the neighbour nodes
 for (int i = 0; i < node.neighbours.Count; i++)
 {
 //Check if the current neighbor has not been explored
 if (!m_exploredNodes.Contains(node.neighbours[i])
 && !m_frontierNodes.Contains(node.neighbours[i]))
 {
 //Get distance values to neighbour and total distance
 float distanceToNeighbour = m_graph.GetNodeDistance(node,
node.neighbours[i]);
 float newDistanceTravelled = distanceToNeighbour +
node.distanceTravelled + (int)node.nodeType;
 //Create a trail of nodes visited and update distance travelled
 node.neighbours[i].distanceTravelled = newDistanceTravelled;
 node.neighbours[i].previous = node;

 //Add the neighbour node to explored nodes queue
 node.neighbours[i].priority = m_exploredNodes.Count;
 m_frontierNodes.Enqueue(node.neighbours[i]);
 }
 }
 }
 }
//Expand the frontier nodes using greedy best first search
 void ExpandFrontierGreedyBestFirst(Node node)
 {
 if (node != null)
 {
 //Loop through all the neighbour nodes
 for (int i = 0; i < node.neighbours.Count; i++)
 {
 //Check if the current neighbor has not been explored
 if (!m_exploredNodes.Contains(node.neighbours[i])
 && !m_frontierNodes.Contains(node.neighbours[i]))
 {
 //Get distance values to neighbour and total distance
 float distanceToNeighbour = m_graph.GetNodeDistance(node,
node.neighbours[i]);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 77 of 114

 float newDistanceTravelled = distanceToNeighbour +
node.distanceTravelled + (int)node.nodeType;

 //Create a trail of nodes visited and update distance travelled
 node.neighbours[i].distanceTravelled = newDistanceTravelled;
 node.neighbours[i].previous = node;

 //Set the priority of a neighbour node based on distance to the
goal node
 if (m_graph != null)
 {
 node.neighbours[i].priority =
m_graph.GetNodeDistance(node.neighbours[i], m_goalNode);
 }
 m_frontierNodes.Enqueue(node.neighbours[i]);
 }
 }
 }
 }

 //Expand the frontier nodes using A Star search
 void ExpandFrontierAStar(Node node)
 {
 if (node != null)
 {
 //Loop through all the neighbour nodes
 for (int i = 0; i < node.neighbours.Count; i++)
 {
 //Check if the current neighbor has not been explored
 if (!m_exploredNodes.Contains(node.neighbours[i]))
 {
 //Get distance values to neighbour and total distance
 float distanceToNeighbour = m_graph.GetNodeDistance(node,
node.neighbours[i]);
 float newDistanceTravelled = distanceToNeighbour +
node.distanceTravelled + (int)node.nodeType;

 //Check if a shorter path exists to the neighbour and re-route the
path
 if (float.IsPositiveInfinity(node.neighbours[i].distanceTravelled)
||
 newDistanceTravelled < node.neighbours[i].distanceTravelled)
 {
 node.neighbours[i].previous = node;
 node.neighbours[i].distanceTravelled = newDistanceTravelled;
 }
 //Check if a neighbor is not part of the frontier list and add it
to the priority queue
 if (!m_frontierNodes.Contains(node.neighbours[i]) && m_graph !=
null)
 {
 //Priority queue order is Score = (distance from start) +
(estimated distance to goal)
 float distanceToGoal =
m_graph.GetNodeDistance(node.neighbours[i], m_goalNode);
 node.neighbours[i].priority =
node.neighbours[i].distanceTravelled
 + distanceToGoal;
 m_frontierNodes.Enqueue(node.neighbours[i]);
 }
 }
 }

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 78 of 114

 }
 }

 //Generate list of path Nodes by travesing backwards from the goal Node
 List<Node> GetPathNodes(Node endNode)
 {
 List<Node> path = new List<Node>();
 if(endNode == null)
 {
 return path;
 }
 //Begin at the goal node
 path.Add(endNode);

 //Follow the trail of arrows back to the start node
 Node currentNode = endNode.previous;

 while (currentNode != null)
 {
 //Insert the previous node at the beginning of the path
 path.Insert(0, currentNode);
 //Continue travesing backwards through graph
 currentNode = currentNode.previous;
 }
 //Return the list of path nodes
 return path;
 }

 //Called to write pathfinder results onto a text file
 public void CreateText()
 {
 //Declaring the path of the file
 string path = Application.dataPath + "/../Log.txt";
 //Create File if it doesn't exist
 if (!File.Exists(path))
 {
 File.WriteAllText(path, "\\\\\\\\\\ Pathfinder Log: /////");
 }
 Parameters.text = Parameters.text.Replace("Dijkstra's Algorithm", "");
 Parameters.text = Parameters.text.Replace("Greedy Best First", "");
 Parameters.text = Parameters.text.Replace("A* (A Star) Search", "");
 Parameters.text = Parameters.text.Replace("Breadth First Search", "");
 //Setting the Content of the file
 string content = "\n\n\\\\\\ (New Maze) Log date: " + System.DateTime.Now +
"///\n\n\\\\ Parameters: //" + Parameters.text + "\n\\\\ Results: //" +
Information.text;
 //Replacing unnecessary characters
 content = content.Replace("<i>","");
 content = content.Replace("</i>", "");
 content = content.Replace("<size=42>", "");
 content = content.Replace("<size=40>", "");
 content = content.Replace("</size>", "");
 //Add the content to the file
 File.AppendAllText(path, content);
 }
}

Pause Code:
using System.Collections;
using System.Collections.Generic;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 79 of 114

using UnityEngine;
using UnityEngine.UI;

//This class is to pause and resume the project
public class Pause : MonoBehaviour
{
 //Assigning game objects to each variable
 public GameObject pauseButton;
 public GameObject playButton;
 public GameObject selectPatfinder;

 //Called when the pause button is clicked
 public void pauseGame()
 {
 //Stops the pathfinding timer
 GameObject.Find("Pathfinder").GetComponent<Pathfinder>().stopwatch.Stop();
 //Pauses the in project time
 Time.timeScale = 0;
 //Sets the play button as visible and pause button as hidden
 pauseButton.SetActive(false);
 playButton.SetActive(true);
 }

 //Called when the play button is clicked
 public void continueGame()
 {
 //Starts the pathfinding timer
 GameObject.Find("Pathfinder").GetComponent<Pathfinder>().stopwatch.Start();
 //Resumes the in project time
 Time.timeScale = 1;
 //Sets the play button as visible and pause button as hidden
 playButton.SetActive(false);
 pauseButton.SetActive(true);
 }
}

Priority Queue Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;

//Priority queue implemented using a list with binary heap (binary tree)
public class PriorityQueue<T> where T : IComparable<T>
{
 //List the nodes in the queue
 List<T> data;

 //Number of nodes in the queue (read-only)
 public int Count { get { return data.Count; } }

 //Called to initialise the list
 public PriorityQueue()
 {
 this.data = new List<T>();
 }

 //Called to add a node to the priority queue and sort using a binary tree
 public void Enqueue(T item)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 80 of 114

 {
 //Add the node at the end of the list
 data.Add(item);

 //Start at the last position in the binary tree
 int childindex = data.Count - 1;

 //Sort using a minum binary tree
 while (childindex > 0)
 {
 //Find the parent index of the child node
 int parentindex = (childindex - 1) / 2;
 //Check if the parent and child are already sorted, if so then break out
the while loop
 if(data[childindex].CompareTo(data[parentindex]) >= 0)
 {
 break;
 }
 //Otherwise swap the parent and child positions
 T tmp = data[childindex];
 data[childindex] = data[parentindex];
 data[parentindex] = tmp;

 //Move up one level in the binary tree
 childindex = parentindex;
 }
 }

 //Remove a node from the priority queue and sort
 public T Dequeue()
 {
 //Get the index of the last node
 int lastindex = data.Count - 1;

 //Store the first node in the list
 T frontItem = data[0];

 //Replace the first node with the last node
 data[0] = data[lastindex];

 //Remove the last index of the priority queue
 data.RemoveAt(lastindex);

 //Decrement node count by one
 lastindex--;

 //Start at the beginning of the queue
 int parentindex = 0;

 //Sort using binary heap (binary tree)
 while (true)
 {
 //Choose the left child node in the binary tree
 int childindex = parentindex * 2 + 1;

 //Check if there is no left child node, if not then break the while loop
 if (childindex > lastindex)
 {
 break;
 }

 //Store the right child

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 81 of 114

 int rightchild = childindex + 1;

 //Check if the value of the right child is less than the left child
 if (rightchild <= lastindex &&
data[rightchild].CompareTo(data[childindex]) < 0)
 {
 //Switch to the right child node of the binary tree
 childindex = rightchild;
 }

 //Check if the parent and child are already sorted, if so then break out
the while loop
 if (data[parentindex].CompareTo(data[childindex]) <= 0)
 {
 break;
 }

 //Otherwise swap the parent and child positions
 T tmp = data[parentindex];
 data[parentindex] = data[childindex];
 data[childindex] = tmp;

 //Move down one level in the binary tree
 parentindex = childindex;
 }

 //Return the original first node
 return frontItem;
 }

 //Look at the first node without dequeuing
 public T Peek()
 {
 T frontItem = data[0];
 return frontItem;
 }

 //Check if a node is in the list
 public bool Contains(T item)
 {
 return data.Contains(item);
 }

 //Return the data as a list
 public List<T> ToList()
 {
 return data;
 }
}

Settings Code:
using System.Collections;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.SceneManagement;
using System.Collections.Generic;

//This class controls all menus, GUIs, and user settings
public class Settings : MonoBehaviour
{

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 82 of 114

 //Declaring all default variable values
 public InputField iWidth;
 public int width = 25;
 public InputField iHeight;
 public int height = 25;
 public InputField iStartX;
 public int startX = 0;
 public InputField iStartY;
 public int startY = 0;
 public InputField iGoalX;
 public int goalX = 24;
 public InputField iGoalY;
 public int goalY = 24;
 public InputField iBorderSize;
 public int temp;
 public int tempX;
 public int tempY;

 public float borderSize = 0.1f;
 public float tempf;

 public bool Pass = false;
 public bool zoom = false;

 //Assigning toggle buttons to each variable
 public Toggle iShowArrows;
 public bool showArrows;
 public Toggle iExitOnGoal;
 public bool ExitOnGoal;
 public Toggle iShowIterations;
 public bool showIterations;
 public Toggle iEightDirections;
 public bool eightDirections;
 public InputField iTimeStep;
 public float timeStep = 0.01f;

 public Toggle iPresetMaze;
 public Toggle iRandomMaze;
 public Toggle iCustomMaze;

 public Toggle iPresetMaze1;
 public Toggle iPresetMaze2;
 public Toggle iPresetMaze3;
 public Toggle iPresetMaze4;

 public Toggle iRandomMaze1;
 public Toggle iRandomMaze2;
 public Toggle iRandomMaze3;

 public Toggle iDijkstra;
 public Toggle iAStar;
 public Toggle iBreadthFirstSearch;
 public Toggle iGreedyBestFirst;

 public Toggle iSortDistance;
 public Toggle iSortTime;
 public Toggle iSortSpeed;

 //Assigning canvases and game objects to each variable
 public GameObject eightDir;
 public GameObject fourDir;
 public GameObject eightDir2;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 83 of 114

 public GameObject fourDir2;
 public GameObject eightDir3;
 public GameObject fourDir3;
 public GameObject eightDir4;
 public GameObject fourDir4;

 public GameObject menuCanvas;
 public GameObject canvas1;
 public GameObject canvas2;
 public GameObject canvas3;
 public GameObject canvas4;
 public GameObject canvas5;
 public GameObject canvas6;
 public GameObject canvas7;

 public GameObject backgroundImage;

 public GameObject pauseButton;
 public GameObject playButton;
 public GameObject ThreeDimButton;
 public GameObject TwoDimButton;

 public GameObject ChooseAnother;
 public GameObject Comparison;
 public GameObject ScrollView;
 public GameObject Warning;
 public GameObject Key;
 public GameObject Parameters;

 public GameObject textDijkstra;
 public GameObject textAStar;
 public GameObject textBreadth;
 public GameObject textGreedy;

 //Assigning text boxes to all error code types
 public Text errorCodes;
 public Text errorCodes2;
 public Text errorCodes3;
 public Text errorCodes4;
 public Text errorCodes5;
 public Text errorCodes6;
 public Text errorCodes7;

 //Declaring all default speed, time and distance variables for the pathfinders
 public float DijkstraTime = 999999;
 public float AStarTime = 999998;
 public float BreadthTime = 999997;
 public float GreedyTime = 999996;

 public float DijkstraDistance = 999999;
 public float AStarDistance = 999998;
 public float BreadthDistance = 999997;
 public float GreedyDistance = 999996;

 public float DijkstraSpeed;
 public float AStarSpeed;
 public float BreadthSpeed;
 public float GreedySpeed;

 //Update is called once every frame
 void Update()
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 84 of 114

 //Slowly rotate background image
 backgroundImage.transform.Rotate(0, 0, 0.33f);
 }

 //Called to check user inputted values on the settings menu
 public void CheckInput()
 {
 //Clear error codes text box
 errorCodes.text = "";

 //Check if user input is in the correct data type and store value
 bool success = int.TryParse(iWidth.text, out temp);
 if (success && temp >= 3 && temp <= 100)
 {
 width = temp;
 }
 //If the text box is left blank use default value
 else if (iWidth.text == "")
 {
 width = 25;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect WIDTH value submitted";
 }

 //Check if user input is in the correct data type and store value
 success = int.TryParse(iHeight.text, out temp);
 if (success && temp >= 3f && temp <= 100f)
 {
 height = temp;
 }
 //If the text box is left blank use default value
 else if (iHeight.text == "")
 {
 height = 25;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect HEIGHT value submitted";
 }

 //Check if user input is in the correct data type and store value
 success = float.TryParse(iBorderSize.text, out tempf);
 if (success && tempf >= 0f && tempf <= 0.5f)
 {
 borderSize = tempf;
 }
 //If the text box is left blank use default value
 else if (iBorderSize.text == "")
 {
 borderSize = 0.1f;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect BORDER SIZE value submitted";
 }

 //Check if user input is in the correct data type and store value

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 85 of 114

 success = int.TryParse(iStartX.text, out temp);
 if ((success && temp >= 0 && temp <= 99) && (temp <= (width - 1) && temp >=
0))
 {
 startX = temp;
 }

//If the text box is left blank use default value
 else if (iStartX.text == "")
 {
 startX = 0;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect STARTX value submitted";
 }

 //Check if user input is in the correct data type and store value
 success = int.TryParse(iStartY.text, out temp);
 if ((success && temp >= 0 && temp <= 99) && (temp <= (height - 1) && temp >=
0))
 {
 startY = temp;
 }
 //If the text box is left blank use default value
 else if (iStartY.text == "")
 {
 startY = 0;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect STARTY value submitted";
 }

 //Check if user input is in the correct data type and store value
 bool successX = int.TryParse(iGoalX.text, out tempX);
 if (successX && tempX >= 0 && tempX <= 99 && (tempX <= (width - 1) && tempX >=
0))
 {
 goalX = tempX;
 }
 //If the text box is left blank use default value
 else if (iGoalX.text == "" && goalX <= (width - 1) && goalX >= 0)
 {
 goalX = 24;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect GOALX value submitted";
 }

 //Check if user input is in the correct data type, not the same as start y,
and store value
 bool successY = int.TryParse(iGoalY.text, out tempY);
 if ((successY && tempY >= 0 && tempY <= 99 && tempY <= (height - 1) && tempY
>= 0))
 {
 goalY = tempY;
 }

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 86 of 114

 //If the text box is left blank use default value
 else if (iGoalY.text == "" && goalY <= (height - 1) && goalY >= 0 && (goalX !=
startX && goalY != startY))
 {
 goalY = 24;
 }
 //Otherwise, if incorrect input then display error message
 else
 {
 errorCodes.text += "\n\nIncorrect GOALY value submitted";
 }

 //Check if user input for goalX and goalY is the same as startX and startY,
and display error message
 if (iGoalX.text != "" && iGoalY.text != "" && (tempX == startX && tempY ==
startY) && goalX == startX && goalY == startY)
 {
 errorCodes.text += "\n\nThe GOAL and START nodes have the same
coordinates";
 }

 //Check for if the Show Arrows toggle is set to active
 if (iShowArrows.isOn == true)
 {
 //Set Show Arrows as true
 showArrows = true;
 }
 else
 //Set Show Arrows to false
 showArrows = false;

 //Check for if the Exit On Goal toggle is set to active
 if (iExitOnGoal.isOn == true)
 {
 //Set Exit On Goal to true
 ExitOnGoal = true;
 }
 else
 {
 //Set Exit On Goal to false
 ExitOnGoal = false;
 }

 //Check for if the Show Arrows toggle is set to active
 if (iShowIterations.isOn == true)
 {
 //Set Show Iterations to true
 showIterations = true;

 //Check if user input is in the correct data type and store value
 success = float.TryParse(iTimeStep.text, out tempf);
 if (success && tempf >= 0.01f && tempf <= 5)
 {
 timeStep = tempf;
 }
 //If the text box is left blank use default value
 else if (iTimeStep.text == "")
 {
 timeStep = 0.01f;
 }
 //Otherwise, if incorrect input then display error message
 else

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 87 of 114

 {
 errorCodes.text += "\n\nIncorrect TIME STEP value submitted";
 }
 }
 else
 //Set Show Iterations as false
 showIterations = false;

 //Check for if the Eight Directions toggle is set to active
 if (iEightDirections.isOn == true)
 {
 //Set Eight Directions to true
 eightDirections = true;
 }
 else
 {
 //Set Eight Directions to false
 eightDirections = false;
 }

 //Check if there were no error codes
 if (errorCodes.text == "")
 {
 //Pass the user onto the next menu screen
 Pass = true;
 }

 //Set settings menu as inactive and type of maze menu as active
 if (Pass == true)
 {
 canvas1.SetActive(false);
 canvas2.SetActive(true);
 }

 //Change the image indicating number of directions depending on state of Eight
Directions
 if (eightDirections == true)
 {
 eightDir.SetActive(true);
 fourDir.SetActive(false);
 }
 else
 {
 eightDir.SetActive(false);
 fourDir.SetActive(true);
 }

 //Display all the user inputted values so the user can see their previous
input
 errorCodes2.text = "Maze Width: " + width + "\n\nMaze Height: " + height +
"\n\nStart X: " + startX +
 "\n\nStart Y: " + startY + "\n\nGoal X: " + goalX + "\n\nGoal Y: " + goalY
+
 "\n\nBorder Size: " + borderSize + "\n\nExit On Goal: " + ExitOnGoal +
"\n\nShow Arrows: " + showArrows +
 "\n\nShow Iterations: " + showIterations;

 //Check if show iteration was enabled
 if (showIterations == true)
 {
 //Display the user inputted value for Time Step
 errorCodes2.text += "\n\nTime Step: " + timeStep;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 88 of 114

 }
 }

 //Called to check user input on the maze type menu
 public void CheckInput2()
 {
 //Check if preset maze was chosen
 if (iPresetMaze.isOn == true)
 {
 //Go to the preset maze menu
 canvas2.SetActive(false);
 canvas3.SetActive(true);
 //Display warning on a preset maze using non-user defined values
 errorCodes3.text = "<color=red>WARNING:</color>\nWidth\nHeight\nStart
X\nStart Y\nGoal X\nGoal Y\n\n" +
 "Will be <color=red>RESET</color> if a Preset Maze is chosen";
 //Change the image indicating number of directions depending on state of
Eight Directions
 if (eightDirections == true)
 {
 eightDir2.SetActive(true);
 fourDir2.SetActive(false);
 }
 else
 {
 eightDir2.SetActive(false);
 fourDir2.SetActive(true);
 }
 }

 //Check if random maze was chosen
 else if (iRandomMaze.isOn == true)
 {
 //Go to the random maze menu
 canvas2.SetActive(false);
 canvas4.SetActive(true);

//Display all the user inputted values so the user can see their previous inputs
 errorCodes4.text = "Maze Width: " + width + "\n\nMaze Height: " + height +
"\n\nStart X: " + startX +
 "\n\nStart Y: " + startY + "\n\nGoal X: " + goalX + "\n\nGoal Y: " + goalY
+
 "\n\nBorder Size: " + borderSize + "\n\nExit On Goal: " + ExitOnGoal +
"\n\nShow Arrows: " + showArrows +
 "\n\nShow Iterations: " + showIterations;

 //Check if show iteration was enabled
 if (showIterations == true)
 {
 //Display the user inputted value for Time Step
 errorCodes4.text += "\n\nTime Step: " + timeStep;
 }
 //Change the image indicating number of directions depending on state of
Eight Directions
 if (eightDirections == true)
 {
 eightDir3.SetActive(true);
 fourDir3.SetActive(false);
 }
 else
 {
 eightDir3.SetActive(false);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 89 of 114

 fourDir3.SetActive(true);
 }

 }

 //Check if custom maze was chosen
 else if (iCustomMaze.isOn == true)
 {
 canvas2.SetActive(false);
 errorCodes5.text = "<size=39>INSTRUCTIONS</size>\n\n1. Click on a
desired Node Type below\n\n2. Click the Nodes on the left to apply the Node Type\n\n3.
Click 'Create' when you are completed";
 //Change the image indicating number of directions depending on state of
Eight Directions
 if (eightDirections == true)
 {
 eightDir4.SetActive(true);
 fourDir4.SetActive(false);
 }
 else
 {
 eightDir4.SetActive(false);
 fourDir4.SetActive(true);
 }
 canvas5.SetActive(true);

 //Get the grid dimensions for the custom maze menu
 GameObject.Find("GridHolder").GetComponent<GridSet>().CustomMazeLayout();
 }
 //Check if the user has not selected either maze type
 else
 {
 //Display error code
 if (!errorCodes2.text.Contains("Choose an Option"))
 errorCodes2.text += "\n\n<color=red>Choose an Option</color>";
 }
 }

 //Called to check user input values on the preset maze menu
 public void CheckPreset()
 {
 //Check if preset maze one is chosen
 if (iPresetMaze1.isOn == true)
 {
 //Declare the variable values according to the preset and set pathfinder
menu as active
 canvas3.SetActive(false);
 startX = 0;
 startY = 0;
 goalX = 14;
 goalY = 14;
 width = 15;
 height = 15;
 canvas6.SetActive(true);
 }

 //Check if preset maze two is chosen
 else if (iPresetMaze2.isOn == true)
 {
 //Declare the variable values according to the preset and set pathfinder
menu as active
 canvas3.SetActive(false);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 90 of 114

 startX = 0;
 startY = 24;
 goalX = 24;
 goalY = 0;
 width = 25;
 height = 25;
 canvas6.SetActive(true);

 }

 //Check if preset maze three is chosen
 else if (iPresetMaze3.isOn == true)
 {
 //Declare the variable values according to the preset and set pathfinder
menu as active
 canvas3.SetActive(false);
 startX = 0;
 startY = 50;
 goalX = 99;
 goalY = 50;
 width = 100;
 height = 100;
 canvas6.SetActive(true);
 }

 //Check if preset maze four is chosen
 else if (iPresetMaze4.isOn == true)
 {
 //Declare the variable values according to the preset and set pathfinder
menu as active
 canvas3.SetActive(false);
 startX = 0;
 startY = 0;
 goalX = 49;
 goalY = 8;
 width = 50;
 height = 9;
 canvas6.SetActive(true);
 }
 //Check if the user has not selected a preset maze
 else
 {
 //Display error codes
 if (!errorCodes3.text.Contains("Choose an Option"))
 errorCodes3.text += "\n<size=29><color=red>\nChoose an
Option</color></size>";

 }
 }

 //Called to check user input on the random maze menu
 public void CheckRandom()
 {
 //Check if random maze one is chosen
 if (iRandomMaze1.isOn == true)
 {
 //Set pathfinder menu as active
 canvas4.SetActive(false);
 canvas6.SetActive(true);
 }
 //Check if random maze two is chosen
 else if (iRandomMaze2.isOn == true)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 91 of 114

 {
 //Set pathfinder menu as active
 canvas4.SetActive(false);
 canvas6.SetActive(true);

 }
 //Check if random maze three is chosen
 else if (iRandomMaze3.isOn == true)
 {
 //Set pathfinder menu as active
 canvas4.SetActive(false);
 canvas6.SetActive(true);
 }
 //Check if user has not selected a random maze
 else
 {
 //Display error codes
 if (!errorCodes4.text.Contains("Choose an Option"))
 errorCodes4.text += "\n<size=29><color=red>\nChoose an
Option</color></size>";

 }
 }

 //Called to check user inputted values on the custom maze menu
 public void CreateCustomMaze()
 {
 //Set pathfinder menu as active
 canvas5.SetActive(false);
 canvas6.SetActive(true);
 }

 //Called when the user wants to create a new maze
 public void ResetScene()
 {
 //Resets all variable values and goes back to menu screen
 SceneManager.LoadScene(SceneManager.GetActiveScene().name);
 }

 //Called to check what pathfinder is chosen to run by the user
 public void CheckPathfinder()
 {
 //Set timescale to real world time
 Time.timeScale = 1;

 //Check if Dijkstra's algorithm is selected
 if (iDijkstra.isOn == true)
 {
 //Go to graph of nodes and begin pathfinder
 canvas6.SetActive(false);

GameObject.Find("DemoController").GetComponent<DemoController>().BeginMaze();
 canvas7.SetActive(true);
 zoom = true;
 }

 //Check if A Star search has been selected
 else if (iAStar.isOn == true)
 {
 //Go to graph of nodes and begin pathfinder
 canvas6.SetActive(false);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 92 of 114

GameObject.Find("DemoController").GetComponent<DemoController>().BeginMaze();

 canvas7.SetActive(true);
 zoom = true;
 }

//Check if Breadth First Search has been selected
 else if (iBreadthFirstSearch.isOn == true)
 {
 //Go to graph of nodes and begin pathfinder
 canvas6.SetActive(false);

GameObject.Find("DemoController").GetComponent<DemoController>().BeginMaze();
 canvas7.SetActive(true);
 zoom = true;
 }

 //Check if Greedy Best First search has been selected
 else if (iGreedyBestFirst.isOn == true)
 {
 //Go to graph of nodes and begin pathfinder
 canvas6.SetActive(false);

GameObject.Find("DemoController").GetComponent<DemoController>().BeginMaze();
 canvas7.SetActive(true);
 zoom = true;
 }
 //Check if the user has not selected a pathfinder
 else
 {
 //Display error code
 if (!errorCodes6.text.Contains("Choose an Option"))
 errorCodes6.text += "\n<size=29><color=red>\nChoose an
Option</color></size>";

 }

 //Check if a pathfinder has been successfully chosen
 if(zoom == true)
 {
 //Display 3D/2D buttons as well as Play/Pause buttons
 playButton.SetActive(false);
 pauseButton.SetActive(true);
 TwoDimButton.SetActive(false);
 ThreeDimButton.SetActive(true);
 }

 //Display all the user inputted values so the user can see their previous
inputs
 errorCodes7.text = "\n\n\n\n\nMaze Width: " + width + "\n\nMaze Height: " +
height + "\n\nStart X: " + startX +
 "\n\nStart Y: " + startY + "\n\nGoal X: " + goalX + "\n\nGoal Y: " + goalY
+
 "\n\nBorder Size: " + borderSize + "\n\nExit On Goal: " + ExitOnGoal +
"\n\nShow Arrows: " + showArrows +
 "\n\nShow Iterations: " + showIterations + "\n\nEight Directions: " +
eightDirections;

 //Check if show iteration is set to true
 if (showIterations == true)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 93 of 114

 {
 //Display time step
 errorCodes7.text += "\n\nTime Step: " + timeStep;
 }

 //Check what pathfinding algorithm is being run and display its name
 if (iDijkstra.isOn == true)
 {
 errorCodes7.text += "\n\n<size=40><i>Dijkstra's Algorithm</i></size>";
 }
 else if (iAStar.isOn == true)
 {
 errorCodes7.text += "\n\n<size=40><i>A* (A Star) Search</i></size>";
 }
 else if (iBreadthFirstSearch.isOn == true)
 {
 errorCodes7.text += "\n\n<size=40><i>Breadth First Search</i></size>";
 }
 else if (iGreedyBestFirst.isOn == true)
 {
 errorCodes7.text += "\n\n<size=40><i>Greedy Best First</i></size>";
 }
 }

 //Called to go back to the main menu
 public void Back()
 {
 //Reset camera position, size, and type and reset selected variable values
 canvas2.SetActive(false);

 Time.timeScale = 1;
 Camera.main.orthographic = true;
 Camera.main.transform.eulerAngles = new Vector3(90, 0, 0);
 Camera.main.transform.position = new Vector3(510, 385, -950);
 Camera.main.orthographicSize = (385);

 GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().zoom =
false;
 iPresetMaze.isOn = false;
 iRandomMaze.isOn = false;
 iCustomMaze.isOn = false;

 SceneManager.LoadScene(SceneManager.GetActiveScene().name);
 //Set main menu screen as active
 menuCanvas.SetActive(true);
 }

 //Called to go back to the previous menu page
 public void Back2()
 {
 //Reset variable values set on current menu screen
 canvas3.SetActive(false);
 iPresetMaze1.isOn = false;
 iPresetMaze2.isOn = false;
 iPresetMaze3.isOn = false;
 iPresetMaze4.isOn = false;
 //Set previous menu screen as active
 canvas2.SetActive(true);
 }

 //Called to go back to the previous menu page
 public void Back3()

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 94 of 114

 {
 //Reset variable values set on current menu screen
 canvas4.SetActive(false);
 iRandomMaze1.isOn = false;
 iRandomMaze2.isOn = false;
 iRandomMaze3.isOn = false;
 //Set previous menu screen as active
 canvas2.SetActive(true);
 }

 //Called to go back to the previous menu page
 public void Back4()
 {
 //Reset variable values set on current menu screen
 canvas5.SetActive(false);
 iCustomMaze.isOn = false;
 //Set previous menu screen as active
 canvas2.SetActive(true);
 }

 //Called to go back to the previous menu page
 public void Back5()
 {
 //Reset variable values set on current menu screen
 ChooseAnother.SetActive(false);
 iSortDistance.isOn = false;
 iSortTime.isOn = false;
 iSortSpeed.isOn = false;
 Comparison.SetActive(false);
 Warning.SetActive(false);
 ScrollView.SetActive(false);
 Key.SetActive(false);
 Parameters.SetActive(false);
 canvas7.SetActive(false);
 Camera.main.transform.eulerAngles = new Vector3(-90, 0, 0);
 //Set previous menu screen as active
 canvas6.SetActive(true);
 }

 //Called when pathfinding information is to be sorted by distance
 public void SortDistanceUpdate()
 {
 //Update all time, distance, and speed values
 UpdateValues();
 //Get a list of distances for different pathfinders
 List <float> distanceList = new List<float>();
 //Clear the list
 distanceList.Clear();
 //Add all distances to the list
 distanceList.Add(DijkstraDistance);
 distanceList.Add(AStarDistance);
 distanceList.Add(BreadthDistance);
 distanceList.Add(GreedyDistance);
 //Sort the list in ascending order
 distanceList.Sort();
 //Change position of text based on placement in list
 SortList(distanceList, DijkstraDistance, AStarDistance, BreadthDistance,
GreedyDistance);
 }

 //Called when pathfinding information is to be sorted by time
 public void SortTimeUpdate()

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 95 of 114

 {
 //Update all time, distance, and speed values
 UpdateValues();
 //Get a list of distances for different pathfinders
 List<float> timeList = new List<float>();
 //Clear the list
 timeList.Clear();
 //Add all distances to the list
 timeList.Add(DijkstraTime);
 timeList.Add(AStarTime);
 timeList.Add(BreadthTime);
 timeList.Add(GreedyTime);
 //Sort the list in ascending order
 timeList.Sort();
 //Change position of text based on placement in list
 SortList(timeList, DijkstraTime, AStarTime, BreadthTime, GreedyTime);
 }

 //Called when pathfinding information is to be sorted by speed
 public void SortSpeedUpdate()
 {
 //Update all time, distance, and speed values
 UpdateValues();
 //Get a list of distances for different pathfinders
 List<float> speedList = new List<float>();
 //Clear the list
 //Add all distances to the list

speedList.Clear();
 speedList.Add(DijkstraSpeed);
 speedList.Add(AStarSpeed);
 speedList.Add(BreadthSpeed);
 speedList.Add(GreedySpeed);
 //Sort the list in descending order
 speedList.Sort();
 speedList.Reverse();
 //Change position of text based on placement in list
 SortList(speedList, DijkstraSpeed, AStarSpeed, BreadthSpeed, GreedySpeed);
 }

 //Called when the pathfinder has completed its search
 public void UpdateValues()
 {
 //Update time, distance and speed for Dijkstra's algorithm
 DijkstraDistance =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().DijkstraDist
ance;
 DijkstraTime =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().DijkstraTime
;
 DijkstraSpeed =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().DijkstraSpee
d;
 DijkstraDistance = DijkstraDistance + 0.00001f;

 //Update time, distance and speed for A Star search algorithm
 AStarDistance =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().AStarDistanc
e;
 AStarTime =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().AStarTime;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 96 of 114

 AStarSpeed =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().AStarSpeed;
 AStarDistance = AStarDistance + 0.00002f;

 //Update time, distance and speed for Breadth first search algorithm
 BreadthDistance =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().BreadthDista
nce;
 BreadthTime =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().BreadthTime;
 BreadthSpeed =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().BreadthSpeed
;
 BreadthDistance = BreadthDistance + 0.00003f;

 //Update time, distance and speed for Greedy best first search algorithm
 GreedyDistance =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().GreedyDistan
ce;
 GreedyTime =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().GreedyTime;
 GreedySpeed =
GameObject.FindGameObjectWithTag("Pathfinder").GetComponent<Pathfinder>().GreedySpeed;
 GreedyDistance = GreedyDistance + 0.00004f;
 }

 //Called to change position of text values based on placement in list of
Distance/Time/Speed
 public void SortList(List<float> type, float iDijkstra, float iAStar, float
iBreadth, float iGreedy)
 {
 //Check what pathfinder is first in the list and place in the top-left
 if (type[0] == iDijkstra && iDijkstra != iAStar && iDijkstra != iBreadth &&
iDijkstra != iGreedy)
 {
 textDijkstra.GetComponent<RectTransform>().localPosition = new Vector3(-
250, 200, 0);
 }
 else if (type[0] == iAStar && iAStar != iDijkstra && iAStar != iBreadth &&
iAStar != iGreedy)
 {
 textAStar.GetComponent<RectTransform>().localPosition = new Vector3(-250,
200, 0);
 }
 else if (type[0] == iBreadth && iBreadth != iDijkstra && iBreadth != iAStar &&
iBreadth != iGreedy)
 {
 textBreadth.GetComponent<RectTransform>().localPosition = new Vector3(-
250, 200, 0);
 }
 else if (type[0] == iGreedy && iGreedy != iDijkstra && iGreedy != iAStar &&
iGreedy != iBreadth)
 {
 textGreedy.GetComponent<RectTransform>().localPosition = new Vector3(-250,
200, 0);
 }

 //Check what pathfinder is second in the list and place in the top-right
 if (type[1] == iDijkstra && iDijkstra != iAStar && iDijkstra != iBreadth &&
iDijkstra != iGreedy)
 {

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 97 of 114

 textDijkstra.GetComponent<RectTransform>().localPosition = new
Vector3(250, 200, 0);
 }
 else if (type[1] == iAStar && iAStar != iDijkstra && iAStar != iBreadth &&
iAStar != iGreedy)
 {
 textAStar.GetComponent<RectTransform>().localPosition = new Vector3(250,
200, 0);
 }
 else if (type[1] == iBreadth && iBreadth != iDijkstra && iBreadth != iAStar &&
iBreadth != iGreedy)
 {
 textBreadth.GetComponent<RectTransform>().localPosition = new Vector3(250,
200, 0);
 }
 else if (type[1] == iGreedy && iGreedy != iDijkstra && iGreedy != iAStar &&
iGreedy != iBreadth)
 {
 textGreedy.GetComponent<RectTransform>().localPosition = new Vector3(250,
200, 0);
 }

 //Check what pathfinder is third in the list and place in the bottom-left
 if (type[2] == iDijkstra && iDijkstra != iAStar && iDijkstra != iBreadth &&
iDijkstra != iGreedy)
 {
 textDijkstra.GetComponent<RectTransform>().localPosition = new Vector3(-
250, -200, 0);
 }
 else if (type[2] == iAStar && iAStar != iDijkstra && iAStar != iBreadth &&
iAStar != iGreedy)
 {
 textAStar.GetComponent<RectTransform>().localPosition = new Vector3(-250,
-200, 0);
 }
 else if (type[2] == iBreadth && iBreadth != iDijkstra && iBreadth != iAStar &&
iBreadth != iGreedy)
 {
 textBreadth.GetComponent<RectTransform>().localPosition = new Vector3(-
250, -200, 0);
 }
 else if (type[2] == iGreedy && iGreedy != iDijkstra && iGreedy != iAStar &&
iGreedy != iBreadth)
 {
 textGreedy.GetComponent<RectTransform>().localPosition = new Vector3(-250,
-200, 0);
 }

 //Check what pathfinder is fourth in the list and place in the bottom-right
 if (type[3] == iDijkstra && iDijkstra != iAStar && iDijkstra != iBreadth &&
iDijkstra != iGreedy)
 {
 textDijkstra.GetComponent<RectTransform>().localPosition = new
Vector3(250, -200, 0);
 }
 else if (type[3] == iAStar && iAStar != iDijkstra && iAStar != iBreadth &&
iAStar != iGreedy)
 {
 textAStar.GetComponent<RectTransform>().localPosition = new Vector3(250, -
200, 0);
 }

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 98 of 114

 else if (type[3] == iBreadth && iBreadth != iDijkstra && iBreadth != iAStar &&
iBreadth != iGreedy)
 {
 textBreadth.GetComponent<RectTransform>().localPosition = new Vector3(250,
-200, 0);
 }
 else if (type[3] == iGreedy && iGreedy != iDijkstra && iGreedy != iAStar &&
iGreedy != iBreadth)
 {
 textGreedy.GetComponent<RectTransform>().localPosition = new Vector3(250,
-200, 0);
 }
 }
}

Sort Type Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class SortType : MonoBehaviour
{
 //Assigning game objects to each variable
 public Toggle SortDistance;
 public Toggle SortTime;
 public Toggle SortSpeed;

 //Called when the results are being sorted
 public void SortCheck()
 {
 //Check for if user wants to sort by distance
 if (SortDistance.isOn == true)
 {

GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().SortDistanceUpdate
();
 }
 //Check for if user wants to sort by time
 else if (SortTime.isOn == true)
 {

GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().SortTimeUpdate();
 }
 //Check for if user wants to sort by distance
 else if (SortSpeed.isOn == true)
 {

GameObject.FindGameObjectWithTag("Script").GetComponent<Settings>().SortSpeedUpdate();
 }
 }
}

Toggle Instructions Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 99 of 114

//Class used to show/hide information when a toggle is clicke in the menu
public class ToggleInstructions : MonoBehaviour
{
 //Assigning game objects to each variable
 public GameObject Panel;
 public GameObject Panel2;
 public GameObject Panel3;
 public GameObject Panel4;
 public GameObject Panel5;
 public GameObject Panel6;

 //Open instruction menu for about the program
 public void OpenScrollAbout()
 {
 Panel6.SetActive(false);
 Panel5.SetActive(false);
 Panel4.SetActive(false);
 Panel3.SetActive(false);
 Panel2.SetActive(false);
 Panel.SetActive(true);
 }

 //Open instruction menu for Dijkstra's Algorithm
 public void OpenScrollDijkstra()
 {
 Panel6.SetActive(false);
 Panel5.SetActive(false);
 Panel4.SetActive(false);
 Panel3.SetActive(false);
 Panel.SetActive(false);
 Panel2.SetActive(true);
 }

 //Open instruction menu for A Star Algorithm
 public void OpenScrollAStar()
 {
 Panel6.SetActive(false);
 Panel5.SetActive(false);
 Panel4.SetActive(false);
 Panel.SetActive(false);
 Panel2.SetActive(false);
 Panel3.SetActive(true);
 }

 //Open instruction menu for Breadth First Search
 public void OpenScrollBreadth()
 {
 Panel6.SetActive(false);
 Panel5.SetActive(false);
 Panel.SetActive(false);
 Panel3.SetActive(false);
 Panel2.SetActive(false);
 Panel4.SetActive(true);
 }

 //Open instruction menu for Greedy Best First Search
 public void OpenScrollGreedy()
 {
 Panel6.SetActive(false);
 Panel.SetActive(false);
 Panel4.SetActive(false);

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 100 of 114

 Panel3.SetActive(false);
 Panel2.SetActive(false);
 Panel5.SetActive(true);
 }
 //Open instruction menu for the controls for the program
 public void OpenScrollControls()
 {
 Panel.SetActive(false);
 Panel5.SetActive(false);
 Panel4.SetActive(false);
 Panel3.SetActive(false);
 Panel2.SetActive(false);
 Panel6.SetActive(true);
 }
}

Toggle Settings Code:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

//Class used to show/hide information when a toggle is clicked in the menu
public class ToggleSettings : MonoBehaviour
{
 //Assigning game objects to each variable
 public GameObject Panel;
 public GameObject Panel2;
 public GameObject Panel3;
 public GameObject Panel4;

 //Called when the user clicks on a toggle
 public void OpenPanel()
 {
 //If clicked on, change state of panel to shown/hidden
 if (Panel != null)
 {
 bool isActive = Panel.activeSelf;
 Panel.SetActive(!isActive);
 }
 //If clicked on, change state of panel 2 to shown/hidden
 if (Panel2 != null)
 {
 bool isActive = Panel2.activeSelf;
 Panel2.SetActive(!isActive);
 }
 //If clicked on, change state of panel 3 to shown/hidden
 if (Panel3 != null)
 {
 bool isActive = Panel3.activeSelf;
 Panel3.SetActive(!isActive);
 }
 //If clicked on, change state of panel 4 to shown/hidden
 if (Panel4 != null)
 {
 bool isActive = Panel4.activeSelf;
 Panel4.SetActive(!isActive);
 }
 }
}

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 101 of 114

Testing
Objective Te

st

Input Expected
Output

Actual
Output

Pass/Fai
l

Comment
s

Maze width
Default: 25

Range: 3-100

Maze height
Default: 25

Range: 3-100

Starting x-
coordinate

Default: 0
Range: 0-99 below

width minus one

1

2

3

4

5

1

2

3

4

5

1

2

3

4

‘No
input’

14

14.2

200

-50

‘No
input’

14

14.2

200

-50

‘No
input’

14

14.2

200

25

14

‘Incorrec
t maze

Width’

‘Incorrec

t maze
Width’

‘Incorrec
t maze

Width’

25

14

‘Incorrec
t maze
height’

‘Incorrec

t maze
height’

‘Incorrec
t maze

height’

0

14

‘Incorrec
t x-
coordinat

e’
‘Incorrec

t x-

25

14

‘Incorrec
t Maze

Width’

‘Incorrec

t maze
Width’

‘Incorrec
t maze

Width’

25

14

‘Incorrec
t Maze
height’

‘Incorrec

t maze
height’

‘Incorrec
t maze

height’

0

14

‘Incorrec
t x-
coordinat

e’
‘Incorrec

t x-

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Default
value is

used

Default
Value

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 102 of 114

Start y-coordinate

Default: 0
Range: 0-99 and

below height
minus one

End x-coordinate

Default: 24
Range: 0-99 and

below width minus
one

End y-coordinate

Default: 24
Range: 0-99 and
below height

minus one

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

-50

‘No

input’

14

14.2

200

-50

‘No

input’

14

14.2

200

-50

‘No

input’

14

14.2

200

coordinat

e’
‘Incorrec
t x-

coordinat
e’

0

14

‘Incorrec
t y-

coordinat
e’

‘Incorrec
t y-
coordinat

e’
‘Incorrec

t y-
coordinat
e’

0

14

‘Incorrec
t x-

coordinat
e’

‘Incorrec
t x-
coordinat

e’
‘Incorrec

t x-
coordinat
e’

24

14

‘Incorrec
t y-

coordinat
e’
‘Incorrec

t y-

coordinat

e’
‘Incorrec
t x-

coordinat
e’

0

14

‘Incorrec
t y-

coordinat
e’

‘Incorrec
t y-
coordinat

e’
‘Incorrec

t y-
coordinat
e’

0

14

‘Incorrec
t x-

coordinat
e’

‘Incorrec
t x-
coordinat

e’
‘Incorrec

t x-
coordinat
e’

24

14

‘Incorrec
t y-

coordinat
e’
‘Incorrec

t y-

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 103 of 114

A menu to select

what type of maze
type the user

would like and an
error check to
remind the user if

they have not
selected an option

A preset maze
menu from which

the user can select
premade graphs

and an error check
to remind the user
if they have not

selected an option

A random maze
menu from which

the user can select
different types of
random mazes and

an error check to
remind the user if

they have not
selected an option

Allow the user to
zoom in and out

the graph (using
the scroll wheel),

A menu from
which the desired

pathfinder to be
run can be
selected by the

user and an error
check to remind

the user if they
have not selected
an option

5

1

2

1

2

1

2

1

2

1

2

-50

‘Preset

Maze’

‘Nothin

g Selec
ted’

‘Preset
Maze1’

‘Nothin

g Selec
ted’

‘Random
Maze1’

‘Nothin
g Selec

ted’

‘Scroll
up’

‘Scroll
Down’

‘Dijkstr
a’s Alg

orithm’

‘Nothin

g Selec
ted’

coordinat

e’
‘Incorrec
t y-

coordinat
e’

‘Preset
Maze’

‘Choose
an

option’

‘Preset
Maze1’

‘Choose
an

option’

‘Random

Maze1’

‘Choose
an
option’

Zoom in

Zoom

out

‘Dijkstr

a’s Alg
orithm’

‘Choose
an

Option’

Zoom in

coordinat

e’
‘Incorrec
t y-

coordinat
e’

‘Preset
Maze’

(On the
video)

‘Choose
an

option’

‘Preset
Maze1’

‘Choose
an

option’

‘Random

Maze1’

‘Choose
an
option’

Zoom in

Zoom

Out

‘Dijkstr

a’s Alg
orithm’

‘Choose
an

Option’

Zoom in

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 104 of 114

The three-

dimensional
camera can be
zoomed in and out

using the scroll
wheel

A pause/play
button that will

pause the timer
and the pathfinder

User can change
slider that changes

the direction of
light incident on

the graph which
will change the
appearance of

shadows

User can change
RGB sliders that

change the colour
of the background
which can be

changed by the
user from the

default grey to any
RGB value

Create external
text file named

‘Log.txt’ when all
the pathfinding
algorithms have

been run if a
‘Log.txt’ file does

not already exist

Record the date

and time at which
the set of

pathfinding
algorithms were
run

1

2

1

2

1

1

1

1

‘Scroll

up’

‘Scroll

Down’

‘Play'

‘Pause’

Move
the

slider’s
positio

n

Move
the

slider’s
positio
n

All
pathfin

ders
have
been

run

All

pathfin
ders

have
been
run

Zoom
out

Plays
pathfinde
r

Pauses
Pathfinde

r

Direction
of light
changes

Colour of

backgrou
nd

changes
to RGB
value

File is

created/
added

onto

The
accurate

date and
time are

recorded

Zoom
Out

Plays
Pathfinde
r

Pauses
Pathfinde

r

Direction
of Light
changes

Colour of

backgrou
nd

changes
to RGB
value

File is

created/
added

onto
(Video
evidence)

The
accurate

date and
time are
recorded

(Video
evidence)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 105 of 114

Record all the time
taken, distance
travelled, speed,

and nodes
explored into the

text file

1

All
pathfin
ders

have
been

run

All the

values
are
written in

the text
file

All the

values
are
written in

the text
file

Evaluation

Completeness of Objectives
Objectives Achieved Evidence

1. A main menu which the user can navigate
through

a. A button to begin the making of the

maze
b. A button to view the instructions of

the program

2. An instructions page which can be accessed

from the pathfinder and the main menu
a. Information on the following topics

to be displayed when clicked on:
i. About Program
ii. Dijkstra’s Algorithm

iii. Breadth-First Search
iv. Greedy Best First

v. Controls
b. For the main menu instruction page

i. Exit button to go back to main

menu
c. For the pathfinder instruction page

i. Exit button to go back to
selecting pathfinder

3. A settings page where the user can set the
desired values for the maze

a. A button to go back to the main
menu

b. A button to confirm the values and

go on to the next page
c. A list of Integer variables with a

default value which the user can
change (restricted between a certain
range) that include:

i. Maze width
1. Default: 25

2. Range: 3-100
ii. Maze height

Yes

Yes

Yes

Menu
Selector
(Page 59)

Main Menu

(Page 25)

Toggle

Instructions
Script (Page

98)

Instructions

Page (Page
25)

Settings
Script (Page

81)

Settings

Page (Page
26)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 106 of 114

1. Default: 25

2. Range: 3-100
iii. Starting x-coordinate

1. Default: 0

2. Range: 0-99 below
width minus one

iv. Start y-coordinate
1. Default: 0
2. Range: 0-99 and below

height minus one
v. End x-coordinate

1. Default: 24
2. Range: 0-99 and below

width minus one

vi. End y-coordinate
1. Default: 24

2. Range: 0-99 and below
height minus one

d. A list of Boolean variables which the

user can change that include:
i. Pathfinder exit on goal

reached
1. Default: True

ii. Show arrows displaying the

previous node where the
pathfinder traversed from

1. Default: True
iii. Allow the pathfinder to

traverse in eight directions
1. Default: True (False

means travels in four

directions)
iv. Show the pathfinder as it

traverses through the graph
1. Default: True (False

means just the final

path is displayed)
e. A list of Float variables which the

user can change that include
i. The size of the gap between

adjacent nodes (border size)

1. Default: 0.1
2. Range: 0-0.5

ii. When show iterations is true,
the time interval in seconds
between each step in the

pathfinder
1. Default: 0.01

2. Range: 0.01-5
f. A dynamic display that shows what

will happen in the case of each

Boolean variable being true or false

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 107 of 114

with their descriptions being changed

accordingly
g. An error check for if any value

entered is out of range when the

confirm button is clicked
h. An error check for the start and end

nodes being the same coordinate as
that distance is always zero

i. A list of all erroneous values that

have been inputted incorrectly by the
user to be displayed clearly.

j. An entry box next to each variable so
the user can see the default value as
well as their edited one

k. Disable the time step entry box if the
option to show iterations is set to

false.

4. A menu to select what type of maze type

the user would like
a. Display all the parameters which the

user has entered clearly onto a list
b. A button for a preset maze
c. A button for a random maze

d. A button for a custom maze
e. An option to go back to the main

menu
f. A button to confirm the choice of

maze type
g. An error check to remind the user if

they have not selected an option

5. A preset maze menu from which the user

can select premade graphs
a. An accurate picture of the preset

maze displayed next to the option to

select the respective maze
b. Description below each preset maze

displaying its width, height, starting
x coordinate, starting y coordinate,
ending x-coordinate, and ending y-

coordinate.
c. Premade maze types

i. A simple perfect maze
ii. A maze with a few small gaps

awkwardly placed to test the

pathfinder
iii. A massive maze with a

straight path to the goal as
well as a winding path

Yes

Yes

Maze Type

Selection
(Page 27)

Video
evidence

Preset Maze

Menu (Page
28)

Settings
Script (Page

81)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 108 of 114

iv. A maze with straight paths to

the goal but with different
weights on each path

d. A button to go back to the previous

maze type selection menu
e. A button to confirm the choice of

preset maze
f. An error check to remind the user if

they have not selected an option

g. A warning that their custom variable
values for the width, height, starting

x coordinate, starting y coordinate,
ending x-coordinate, and ending y-
coordinate will not be used in the

preset maze
h. A scrollable window to select these

maze presets from

6. A random maze menu from which the user

can select different types of random mazes
a. An example of the random maze

displayed next to the option to select
the respective maze

b. Random maze types

i. A dense random maze (33%
chance of a wall)

ii. A sparse random maze (25%
chance of a wall)

iii. A very sparse random maze
(20% chance of a wall)

c. A short description below each

random maze displaying the
likelihood of a node being a wall.

d. A button to go back to the previous
maze type selection menu

e. A button to confirm the choice of

random maze
f. An error check to remind the user if

they have not selected an option
g. A scrollable window to select the

random maze type from

h. A list of parameters set by the user
displayed clearly on the screen

7. A custom maze menu where the user can

create their own customised graph

a. Instructions on how to use the
custom maze editor

b. A key displaying all the node type
distances and behaviour

Yes

Yes

Random
Maze Menu

(Page 28)

Settings
Script (Page
81)

Custom
Maze Menu
(Page 30)

Grid Set

Script (Page
50)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 109 of 114

c. A palette from which the user can

choose their desired node type which
includes:

i. Blocked (black); cannot be

traversed by the pathfinder
ii. Open node (white);

horizontal/vertical distance of
one (default)

iii. Light terrain node (light

brown): horizontal/vertical
distance of two

iv. Medium terrain node (brown):
horizontal/vertical distance of
three

v. Heavy terrain node (dark
brown): horizontal/vertical

distance of four
vi. Very heavy terrain node (very

dark brown):

horizontal/vertical distance of
five

d. A graph accurate to the width and
height of the variable values entered,
showing the graph of nodes as a grid

of white squares, except for the start
node which is green, and the goal

node which is red.
i. The start and goal nodes

cannot be edited so the
pathfinder will always have a
start and a goal

e. Allow the user to zoom in and out
the graph (using the scroll wheel),

drag across the graph (clicking the
scroll wheel), and reset the graph by
using the right mouse button

f. The user can edit the graph by
holding and dragging the left mouse

button across the desired nodes in
the graph, which will then change to
the node type selected in the palette

g. A button to go back to the previous
maze type selection menu

h. A button to confirm and create the
custom maze that was drawn

8. A menu from which the desired pathfinder
to be run can be selected by the user

a. A button to go to the instructions
page

b. A button to confirm the pathfinder

selected

Yes

On Node

Click Script
(Page 65)

Pathfinder
Choosing

Menu (Page
30)

Move
Background

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 110 of 114

c. An error check to remind the user if

they have not selected an option
d. Buttons for each pathfinder in the

program that include:

i. Dijkstra’s Algorithm
ii. A* (A Star)

iii. Breadth First Search
iv. Greedy Best First

e. Relevant information with a short

summary of each pathfinder to be
displayed clearly when the mouse is

hovered over the relevant pathfinder

9. The screen for which the pathfinder is

carried out on the maze selected by the
user

a. A fully modelled three-dimensional
graph that the pathfinder will be
carried out on with shadows and

dynamic lighting from a light source
b. Various buttons to change/view

settings:
i. ‘Toggle parameters’ which will

display the variable setting

that were set by the user
1. A key that displays the

meaning of the colours
on the graph that

include:
a. Blocked node

(black) which the

pathfinder cannot
traverse through

b. Open node
(white) which has
horizontal/vertical

distance of one
c. Explored node

(light grey) which
shows nodes that
the pathfinder

has explored
d. Neighbour node

(light blue) which
shows nodes that
are neighbouring

the explored
nodes of the

pathfinder (next
to be explored by
the pathfinder)

Yes

Script (Page

61)

Pathfinders

are run
(Page 31)

Camera
Control

Script (Page
37)

Change
Camera

Script (Page
41)

Demo

Controller
Script (Page
42)

Graph

Script (Page
44)

Graph View
Script (Page

46)

Map Data

Script (Page
53)

Node Script
(Page 62)

Node View

Script (Page
63)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 111 of 114

e. Path nodes

(orange) which
show the final
path determined

by the
pathfinding

algorithm
f. Start node

(green) which

shows the
position in the

graph where the
pathfinder starts
from

g. Goal node (red)
which shows the

position in the
graph the
pathfinding

algorithm ends at
h. Old neighbour

(dark blue) which
shows the
neighbouring

node of the
previous

pathfinding
algorithm that

was run
i. Old explored

(dark grey) which

shows the old
nodes which the

previous
pathfinder had
explored

ii. ‘Select another pathfinder’
that will allow the user to

select another pathfinder to
run

iii. ‘Toggle results’ will show the

user the time taken, distance
travelled, speed, and nodes

explored for the pathfinders
that have been run, (in order
in which they were run) in a

scrollable list
1. A button to return back

to menu will appear
a. A warning

displaying that

the current maze

Map Data

Script (Page
53)

Move
Background

Script (Page
61)

Pathfinder
Script (Page

66)

Pause Script

(Page 78)

Priority
Queue
Script (Page

79)

Sort Type
Script (Page
98)

Toggle

Instructions
Script (Page

98)

Toggle

Settings
Script (Page

100)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 112 of 114

data will be lost if

the pathfinders
have not all been
run yet

2. A button to toggle the
information on the

various pathfinders
a. Dynamic table

with the ability to

sort by distance,
time, or speed

where the
rankings of each
algorithm will be

shown
b. Algorithms that

have not been
run will display a
reminder that

they have not
been selected yet

iv. A 3-d/2-d camera option that
will change the view of the
graph from a top-down two-

dimensional view of the graph,
to that of a fully modelled

three-dimensional view of the
graph, or vice versa

1. Two-dimensional
camera will be default
when the program is

first run for the clearest
view of the graph for

the user
2. Allow the user to zoom

in and out the graph

(using the scroll wheel),
drag across the graph

(clicking the scroll
wheel), and reset the
graph by using the right

mouse button
3. Three-dimensional

camera will pivot
around the centre point
of the graph and rotate

horizontally and
vertically according to

the mouse’s movement.
Prevent the user from
rotating the camera

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 113 of 114

below the horizontal x

axis of the graph.
4. The three-dimensional

camera can be zoomed

in and out using the
scroll wheel

v. A pause/play button that will
pause the timer and the
pathfinder while it is being

run, whilst also maintaining
the functionality of both

dimensional camera types
vi. A drop-down menu where the

user can change various

graphical settings that include:
1. Direction of light

incident on the graph
which will change the
appearance of shadows

2. The colour of the
background which can

be changed by the user
from the default grey to
any RGB value

c. A button to select another pathfinder
to carry out on the maze

10. The program will save all relevant

information in an external text file when all
pathfinding algorithms have been run

a. Create external text file named

‘Log.txt’ when all the pathfinding
algorithms have been run if a

‘Log.txt’ file does not already exist
b. Record the date and time at which

the set of pathfinding algorithms

were run
c. Record the variable values that were

set by the user for the maze in
question

d. Record all the time taken, distance

travelled, speed, and nodes explored
into the text file

e. Save/Update the text file in ‘Log.txt’
which will be created next to the
program file

Yes

File

Structure
(Page 23)

Pathfinder
Script (Page

66)

Gagandeep Malhotra Candidate number: 5380 Centre number: 51411

Langley Grammar School Pathfinding Project Page 114 of 114

Conclusion
Overall, I believe I have met all of the objectives I initially set out to achieve.

Through iterative testing and continually making improvements to my project,

as well as receiving feedback from third parties, all 10 sets of objectives were

completed. I began my project by creating the main part of the program, the

pathfinding algorithms, before any of the menus and customisation options.

Then as the core of my program (main purpose) I began to complete the other

supplementary objectives which were not as integral to the goal of my project.

This allowed me to make sure that my project was consistently functional

throughout the process of my project.

Some improvements that could be made to my project include an option to

import an existing ‘Log.txt’ file that was created from a previous running of the

pathfinding algorithms program, and allow the user to continue using the

pathfinders on the graph that they have saved earlier. Another improvement

could be to allow the user to save the results of the pathfinders even if all the

pathfinding algorithms have not been completed yet. However, all these

improvements are quality of life improvements for the user and do not affect the

main goal of my program which was to investigate, as well as compare, the

benefits and drawbacks of the more prevalent algorithms used in computer

pathfinding, using Dijkstra’s Algorithm, Breadth-First Search, A*(A Star) Search

Algorithm, and Greedy Best-First. The goal was to make a program that could be

used as both a teaching and learning tool for beginners, as well as a problem-

solving tool for people to solve real-world shortest path problems using my

project.

My feedback from my third-party client was that, after reviewing my final

finished pathfinding project, that I had exceeded the initial aim of my program

listed in my objectives, and created a fully-functional, reliable tool for any user

to utilise. From taking the feedback presented to me, both in the survey and

interview, I have added multiple additional objective to my initial set, which I

believe to have greatly improved the quality of my project. In conclusion, as I

have used a variety of advanced data structures and computing techniques, such

as priority queues, stacks, multi-dimensional arrays etc, as well as meeting and

surpassing the initial goals set out in the objectives, I believe I have succeeded

in making my project a valuable program to be used by many others wanting to

learn more about pathfinding algorithms.

